661 research outputs found

    Estimating soil moisture using the Danish polarimetric SAR

    Get PDF

    Interface magnetism of 3d transition metals

    Get PDF

    LDA+DMFT computation of the electronic spectrum of NiO

    Full text link
    The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local density approximation (LDA) is expressed in Wannier functions basis, with only the five anti-bonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating gap in NiO is found to be a result of the strong electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic moment computed in the paramagnetic phase (PM) agrees well with that measured in the antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in accordance with the experimental finding that AFM long-range order has no significant influence on the electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio

    The 5f localization/delocalization in square and hexagonal americium monolayers: A FP-LAPW electronic structure study

    Full text link
    The electronic and geometrical properties of bulk americium and square and hexagonal americium monolayers have been studied with the full-potential linearized augmented plane wave (FP-LAPW) method. The effects of several common approximations are examined: (1) non-spin polarization (NSP) vs. spin polarization (SP); (2) scalar-relativity (no spin-orbit coupling (NSO)) vs. full-relativity (i.e., with spin-orbit (SO) coupling included); (3) local-density approximation (LDA) vs. generalized-gradient approximation (GGA). Our results indicate that both spin polarization and spin orbit coupling play important roles in determining the geometrical and electronic properties of americium bulk and monolayers. A compression of both americium square and hexagonal monolayers compared to the americium bulk is also observed. In general, the LDA is found to underestimate the equilibrium lattice constant and give a larger total energy compared to the GGA calculations. While spin orbit coupling shows a similar effect on both square and hexagonal monolayer calculations regardless of the model, GGA versus LDA, an unusual spin polarization effect on both square and hexagonal monolayers is found in the LDA results as compared with the GGA results. The 5f delocalization transition of americium is employed to explain our observed unusual spin polarization effect. In addition, our results at the LDA level of theory indicate a possible 5f delocalization could happen in the americium surface within the same Am II (fcc crystal structure) phase, unlike the usually reported americium 5f delocalization which is associated with crystal structure change. The similarities and dissimilarities between the properties of an Am monolayer and a Pu monolayer are discussed in detail.Comment: 22 pages, 8 figure

    Orbital densities functional

    Full text link
    Local density approximation (LDA) to the density functional theory (DFT) has continuous derivative of total energy as a number of electrons function and continuous exchange-correlation potential, while in exact DFT both should be discontinuous as number of electrons goes through an integer value. We propose orbital densities functional (ODF) (with orbitals defined as Wannier functions) that by construction obeys this discontinuity condition. By its variation one-electron equations are obtained with potential in the form of projection operator. The operator increases a separation between occupied and empty bands thus curing LDA deficiency of energy gap value systematic underestimation. Orbital densities functional minimization gives ground state orbital and total electron densities. The ODF expression for the energy of orbital densities fluctuations around the ground state values defines ODF fluctuation Hamiltonian that allows to treat correlation effects. Dynamical mean-field theory (DMFT) was used to solve this Hamiltonian with quantum Monte Carlo (QMC) method for effective impurity problem. We have applied ODF method to the problem of metal-insulator transition in lanthanum trihydride LaH_{3-x}. In LDA calculations ground state of this material is metallic for all values of hydrogen nonstoichiometry x while experimentally the system is insulating for x < 0.3. ODF method gave paramagnetic insulator solution for LaH_3 and LaH_{2.75} but metallic state for LaH_{2.5}.Comment: 35 pages, 5 figure

    Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis

    Get PDF
    OBJECTIVE: Glycemic variability is emerging as a measure of glycemic control, which may be a reliable predictor of complications. This systematic review and meta-analysis evaluates the association between HbA1c variability and micro- and macrovascular complications and mortality in type 1 and type 2 diabetes. RESEARCH DESIGN AND METHODS: Medline and Embase were searched (2004–2015) for studies describing associations between HbA1c variability and adverse outcomes in patients with type 1 and type 2 diabetes. Data extraction was performed independently by two reviewers. Random-effects meta-analysis was performed with stratification according to the measure of HbA1c variability, method of analysis, and diabetes type. RESULTS: Seven studies evaluated HbA1c variability among patients with type 1 diabetes and showed an association of HbA1c variability with renal disease (risk ratio 1.56 [95% CI 1.08–2.25], two studies), cardiovascular events (1.98 [1.39–2.82]), and retinopathy (2.11 [1.54–2.89]). Thirteen studies evaluated HbA1c variability among patients with type 2 diabetes. Higher HbA1c variability was associated with higher risk of renal disease (1.34 [1.15–1.57], two studies), macrovascular events (1.21 [1.06–1.38]), ulceration/gangrene (1.50 [1.06–2.12]), cardiovascular disease (1.27 [1.15–1.40]), and mortality (1.34 [1.18–1.53]). Most studies were retrospective with lack of adjustment for potential confounders, and inconsistency existed in the definition of HbA1c variability. CONCLUSIONS: HbA1c variability was positively associated with micro- and macrovascular complications and mortality independently of the HbA1c level and might play a future role in clinical risk assessment

    Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

    Full text link
    We present a simple implementation of the dynamical mean-field theory approach to the electronic structure of strongly correlated materials. This implementation achieves full self-consistency over the charge density, taking into account correlation-induced changes to the total charge density and effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used, and the charge density is computed from moments of the many body momentum-distribution matrix. The calculation of the total energy is also considered, with a proper treatment of high-frequency tails of the Green's function and self-energy. The method is illustrated on two materials with well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the gamma-phase of metallic cerium, using the Hubbard-I approximation to the dynamical mean-field self-energy. The momentum-integrated spectral function and momentum-resolved dispersion of the Hubbard bands are calculated, as well as the volume-dependence of the total energy. We show that full self-consistency over the charge density, taking into account its modification by strong correlations, can be important for the computation of both thermodynamical and spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B

    Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd

    Full text link
    This paper reports calculations for compressed Ce (4f^1), Pr (4f^2), and Nd (4f^3) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure.Comment: 15 pages, 9 figure

    Investigation of polarimetric SAR data acquired at multiple incidence angles

    Get PDF
    • 

    corecore