12,454 research outputs found
A Rich Population of X-ray Emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1
Recent optical and IR studies have revealed that the heavily-reddened
starburst cluster Westerlund 1 (Wd 1) contains at least 22 Wolf-Rayet (WR)
stars, comprising the richest WR population of any galactic cluster. We present
results of a senstive Chandra X-ray observation of Wd 1 which detected 12 of
the 22 known WR stars and the mysterious emission line star W9. The fraction of
detected WN stars is nearly identical to that of WC stars. The WN stars WR-A
and WR-B as well as W9 are exceptionally luminous in X-rays and have similar
hard heavily-absorbed spectra with strong Si XIII and S XV emission lines. The
luminous high-temperature X-ray emission of these three stars is characteristic
of colliding wind binary systems but their binary status remains to be
determined. Spectral fits of the X-ray bright sources WR-A and W9 with
isothermal plane-parallel shock models require high absorption column densities
log N = 22.56 (cm) and yield characteristic shock temperatures
kT_shock ~ 3 keV (T ~ 35 MK).Comment: ApJL, 2006, in press (3 figures, 1 table
Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach
We suggest an architecture for quantum computing with spin-pair encoded
qubits in silicon. Electron-nuclear spin-pairs are controlled by a dc magnetic
field and electrode-switched on and off hyperfine interaction. This digital
processing is insensitive to tuning errors and easy to model. Electron
shuttling between donors enables multi-qubit logic. These hydrogenic spin
qubits are transferable to nuclear spin-pairs, which have long coherence times,
and electron spin-pairs, which are ideally suited for measurement and
initialization. The architecture is scalable to highly parallel operation.Comment: 4 pages, 5 figures; refereed and published version with improved
introductio
Connections of the Mesencephalic Locomotor Region (MLR) in the Cat
The cat entopeduncular nucleus (EN), which is the main output of the basal ganglia, is known to project to the mesencephalic tegmentum. We have been able to elicit antidromic responses in single EN neurons from the region of the mesencephalic locomotor region (MLR), then transect (precollicular-postmamillary) the brainstem and elicit rhythmic movements of the limbs by stimulation of the same site in the same animal. Injections of the fluorescent dye 2,4 diamidino phenylindole 2 HCL (DAPI) into this area induces retrograde labeling of cell bodies in EN and motor cortex. Injections of a tritiated amino acid (leucine) into the motor cortex induce terminal labeling in the area of the MLR. These studies describe convergent projections from EN and motor cortex to the MLR. These connections may be involved in the sequencing and ordering of voluntary movements in which locomotion is necessary
Localization dynamics of fluids in random confinement
The dynamics of two-dimensional fluids confined within a random matrix of
obstacles is investigated using both colloidal model experiments and molecular
dynamics simulations. By varying fluid and matrix area fractions in the
experiment, we find delocalized tracer particle dynamics at small matrix area
fractions and localized motion of the tracers at high matrix area fractions. In
the delocalized region, the dynamics is subdiffusive at intermediate times, and
diffusive at long times, while in the localized regime, trapping in finite
pockets of the matrix is observed. These observations are found to agree with
the simulation of an ideal gas confined in a weakly correlated matrix. Our
results show that Lorentz gas systems with soft interactions are exhibiting a
smoothening of the critical dynamics and consequently a rounded
delocalization-to-localization transition.Comment: 5 pages, 3 figure
Direct UV observations of the circumstellar envelope of alpha Orionis
Observations were made in the IUE LWP camera, low dispersion mode, with alpha Ori being offset various distances from the center of the Long Wavelength Large Aperture along its major axis. Signal was acquired at all offset positions and is comprised of unequal components of background/dark counts, telescope-scattered light, and scattered light emanating from the extended circumstellar shell. The star is known from optical and infrared observations to possess an extended, arc-minute sized, shell of cool material. Attempts to observe this shell with the IUE are described, although the deconvolution of the stellar signal from the telescope scattered light requires further calibration effort
Coulomb gap in the one-particle density of states in three-dimensional systems with localized electrons
The one-particle density of states (1P-DOS) in a system with localized
electron states vanishes at the Fermi level due to the Coulomb interaction
between electrons. Derivation of the Coulomb gap uses stability criteria of the
ground state. The simplest criterion is based on the excitonic interaction of
an electron and a hole and leads to a quadratic 1P-DOS in the three-dimensional
(3D) case. In 3D, higher stability criteria, including two or more electrons,
were predicted to exponentially deplete the 1P-DOS at energies close enough to
the Fermi level. In this paper we show that there is a range of intermediate
energies where this depletion is strongly compensated by the excitonic
interaction between single-particle excitations, so that the crossover from
quadratic to exponential behavior of the 1P-DOS is retarded. This is one of the
reasons why such exponential depletion was never seen in computer simulations.Comment: 6 pages, 1 figur
Very High Resolution Solar X-ray Imaging Using Diffractive Optics
This paper describes the development of X-ray diffractive optics for imaging
solar flares with better than 0.1 arcsec angular resolution. X-ray images with
this resolution of the \geq10 MK plasma in solar active regions and solar
flares would allow the cross-sectional area of magnetic loops to be resolved
and the coronal flare energy release region itself to be probed. The objective
of this work is to obtain X-ray images in the iron-line complex at 6.7 keV
observed during solar flares with an angular resolution as fine as 0.1 arcsec -
over an order of magnitude finer than is now possible. This line emission is
from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma
at temperatures in excess of \approx10 MK. It provides information on the flare
morphology, the iron abundance, and the distribution of the hot plasma.
Studying how this plasma is heated to such high temperatures in such short
times during solar flares is of critical importance in understanding these
powerful transient events, one of the major objectives of solar physics. We
describe the design, fabrication, and testing of phase zone plate X-ray lenses
with focal lengths of \approx100 m at these energies that would be capable of
achieving these objectives. We show how such lenses could be included on a
two-spacecraft formation-flying mission with the lenses on the spacecraft
closest to the Sun and an X-ray imaging array on the second spacecraft in the
focal plane \approx100 m away. High resolution X-ray images could be obtained
when the two spacecraft are aligned with the region of interest on the Sun.
Requirements and constraints for the control of the two spacecraft are
discussed together with the overall feasibility of such a formation-flying
mission
- …