116 research outputs found

    Evaluation of Efficacy and Safety of Fixed Dose Lovastatin and NiacinER Combination in Asian Indian Dyslipidemic Patients: A Multicentric Study

    Get PDF
    Asian Indian dyslipidemia is characterized by: borderline high low-density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B; high triglycerides, low high-density lipoprotein (HDL) cholesterol and apoA1; and high lipoprotein(a) (lp[a]). We performed a controlled multicentric trial in India to evaluate the efficacy and safety of a fixed dose combination of lovastatin and niacin extended release (niacinER) formulation in patients with moderate to severe dyslipidemia. Consecutive subjects that satisfied the selection criteria, agreed to an informed consent, and with no baseline presence of liver/renal disease or heart failure were enrolled in the study. After a 4-week run-in period there were 142 patients with LDL levels ≥130 mg/dL. Eleven patients were excluded because of uncontrolled hyperglycemia and 131 patients were recruited. After baseline evaluation of clinical and biochemical parameters all subjects were administered lovastatin (20 mg) and niacinER (500 mg) combination once daily. Dose escalation was done on basis of lipid parameters at 8 weeks and in 11 patients increased to lovastatin (20 mg) and niacinER (1000 mg). An intention-to-treat analysis was performed and data was analyzed using nonparametric Wilcoxon signed rank test. Thirteen patients (10%) were lost to follow-up and 4 (3%) withdrew because of dermatological adverse effects: flushing, pruritus, and rash. The mean values of various lipid parameters (mg/dL) at baseline, and at weeks 4, 12, and 24 respectively were: total cholesterol 233.9 ± 27, 206.3 ± 27, 189.8 ± 31, and 174.9 ± 27 mg/dL; LDL cholesterol 153.4 ± 22, 127.3 ± 21, 109.2 ± 27, and 95.1 ± 23 mg/dL; triglycerides 171.1 ± 72, 159.5 ± 75, 149.2 ± 45, and 135.2 ± 40 mg/dL; HDL cholesterol 45.6 ± 7, 48.9 ± 7, 51.6 ± 9, and 53.9 ± 10 mg/dL; lp(a) 48.5 ± 26, 40.1 ± 21, 35.4 ± 21, and 26.9 ± 19 mg/dL; and apoA1/apoB ratio 0.96 ± 0.7, 1.04 ± 0.4, 1.17 ± 0.5, and 1.45 ± 0.5 (p < 0.01). The percentage of decline in various lipids at 4, 12, and 24 weeks was: total cholesterol 11.8%, 18.8%, and 25.2%; LDL cholesterol 17.0%, 28.8%, and 38.0%; triglyceride 6.8%, 12.8%, and 21.0%; lp(a) 17.5%, 26.9%, and 44.5% respectively (p < 0.01). HDL cholesterol and apoA1/apoB increased by 7.2%, 13.1%, and 18.2%; and 7.9%, 21.9%, and 51.6% respectively (p < 0.01). Target LDL levels (<100 mg/dL in subjects with manifest coronary heart disease or diabetes; <130 mg/dL in subjects with >2 risk factors) were achieved in 92 (80.7%) patients. No significant changes were observed in systolic or diastolic blood pressure, blood creatinine, transaminases, or creatine kinase. A fixed dose combination of lovastatin and niacinER significantly improved cholesterol lipoprotein lipids as well as lp(a) and apoA1/apoB levels in Asian Indian dyslipidemic patients. Satisfactory safety and tolerability profile in this population was also demonstrated

    Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.)

    Get PDF
    Single feature polymorphisms (SFPs) are microarray-based molecular markers that are detected by hybridization of DNA or cRNA to oligonucleotide probes. With an objective to identify the potential polymorphic markers for drought tolerance in pigeonpea [Cajanus cajan (L.) Millspaugh], an important legume crop for the semi-arid tropics but deficient in genomic resources, Affymetrix Genome Arrays of soybean (Glycine max), a closely related species of pigeonpea were used on cRNA of six parental genotypes of three mapping populations of pigeonpea segregating for agronomic traits like drought tolerance and pod borer (Helicoverpa armigiera) resistance. By using robustified projection pursuit method on 15 pair-wise comparisons for the six parental genotypes, 5,692 SFPs were identified. Number of SFPs varied from 780 (ICPL 8755 × ICPL 227) to 854 (ICPL 151 × ICPL 87) per parental combination of the mapping populations. Randomly selected 179 SFPs were used for validation by Sanger sequencing and good quality sequence data were obtained for 99 genes of which 75 genes showed sequence polymorphisms. While associating the sequence polymorphisms with SFPs detected, true positives were observed for 52.6% SFPs detected. In terms of parental combinations of the mapping populations, occurrence of true positives was 34.48% for ICPL 151 × ICPL 87, 41.86% for ICPL 8755 × ICPL 227, and 81.58% for ICP 28 × ICPW 94. In addition, a set of 139 candidate genes that may be associated with drought tolerance has been identified based on gene ontology analysis of the homologous pigeonpea genes to the soybean genes that detected SFPs between the parents of the mapping populations segregating for drought tolerance

    Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (<it>PLK1</it>) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy.</p> <p>Methods</p> <p>We examined the expression of <it>PLK1 </it>mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting <it>PLK1 </it>mRNA on tumor-initiating cells was evaluated using tumor sphere assays.</p> <p>Results</p> <p>Analysis of gene expression in two independent cohorts revealed that <it>PLK1 </it>mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (<it>SOX2</it>) mRNA in tumor spheres indicating a possible role in targeting tumor inititiating cells.</p> <p>Conclusions</p> <p>Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation.</p

    MicroRNA 128a Increases Intracellular ROS Level by Targeting Bmi-1 and Inhibits Medulloblastoma Cancer Cell Growth by Promoting Senescence

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence. CONCLUSIONS AND SIGNIFICANCE: Here we report the novel regulation of reactive oxygen species (ROS) by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states

    Bryostatin Modulates Latent HIV-1 Infection via PKC and AMPK Signaling but Inhibits Acute Infection in a Receptor Independent Manner

    Get PDF
    HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -α and -δ, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs

    Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AID–Mediated Mutagenesis

    Get PDF
    Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability
    corecore