147 research outputs found

    Recent advancement in drug delivery system

    Get PDF
    Abstract Ease of drug administration, safety, affordability and effi cacy are the major concerns in pharmacotherapy leading to exploration of better drug delivery systems. Liposomes are lyotropic liquid crystals composed mainly of ampiphilic bilayers and these are more frequently used as drug carriers. Liposomes help reduce the toxicity and deliver the drug to the target tissue. So far, liposomes have been the most intensively studied lipid-based delivery system. In liposomes, a hydrophilic drug can be trapped in aqueous interior or channels between successive phospholipids bilayers whereas a hydrophobic drug can reside with the bilayer itself. The non-toxic and nonimmunogenic bilayers dissipate allowing the diffusion of the drug into the tissues. Attachment of polyethyl glycol to the surface of liposome (known as stealth liposome) aids in the better targeting of the drug to the tissues. Pegylated proteins and polymers of lactic and glycolic acids have been well studied as drug carriers and found to be resistant to phagocytosis and complement activation. Newer DNA based strategies including DNA vaccination and antisense oligonucleotides and immunomodulation show good results for new therapeutic systems. Though the DNA based therapeutic systems have high selectivity and specifi city with few adverse effects, these systems are so far restricted to animal models and clinical trials

    Formulation and Development of Adapalene Topical Nanohydrogel Using Different Surfactants and Cosurfactants for Antiacne Activity: In Vitro and Ex Vivo Evaluation

    Full text link
    A formulation of an adapalene nanohydrogel (ADP-NH) using different surfactants and cosurfactants for topical application was developed and characterized. The best formulation was obtained with nanohydrogel (NH) containing Tween-80- (NH-Tween-80-) incorporated carbopol-940 and ethanol, 0.67% and 3.00% w / w , respectively. The optimized formulations of NH-Tween-80, nanohydrogel containing sodium lauryl sulphate (NH-SLS), and nanohydrogel containing glycerol (NH-glycerol) were separately evaluated to examine their in vitro and ex vivo permeability characteristics and compared with 0.3% dimethyl sulfoxide (control) solution. The polydispersity index of NH-Tween-80, NH-SLS, and NH-glycerol were found to be 0.264 ± 0.312 , 0.382 ± 0.0045 , and 0.310 ± 0.412 , respectively. All NH formulations showed pH within human skin pH ranges throughout the stability period. The NH-Tween-80 revealed 191.22 μg/mL of ADP permeation through Strat-M® membrane which was statistically significant ( p &lt; 0.05 ) compared to NH-SLS, NH-glycerol, and control solution. At 24 h, NH-Tween-80 demonstrated 305.11 μg/mL of ADP permeation in Wistar rat abdominal skin which was 1.99-, 1.56-, and 4.89-fold higher in comparison with NH-SLS, NH-glycerol, and control solution, respectively. Moreover, the ex vivo permeability of NH-Tween-80 was also compared with conventional gel (market sample) which was 3.38-fold greater at 24 h. During the 6th month of accelerated stability analysis, the NH-Tween-80, NH-SLS, and NH-glycerol demonstrated 99.25 % ± 0.15 , 91.23 % ± 0.41 , and 96.08 % ± 0.20 drug content, respectively. There were no noticeable physical changes observed up to 6 months for NH-Tween-80, while color change was observed in the 1st month and 3rd month of accelerated stability samples of NH-SLS and NH-glycerol, respectively. In this study, only NH-Tween-80 was considered both physically and chemically stable formulation. Therefore, it was concluded that the topical application of ADP-NH containing Tween-80 could be a very promising alternative for the treatment of acne vulgaris.</jats:p

    Stinging Nettle (Urtica dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties

    Full text link
    Stinging nettle (Urtica dioica L., Urticaceae) is commonly found in Asia, Africa, and Europe and has a long history of being used as food and traditional medicine. Recently, this plant is gaining attention as a highly nutritious food, where fresh leaves are dried and used as powder or in other forms. Leaves are rich in many bioactive compounds. This review aims to cover the traditional uses in food and medicine, as well as its nutritional composition, including its bioactive chemical constituents and reported food functional activities. Various bioactive chemical constituents have been isolated from stinging nettle to date, such as flavonoids, phenolic acids, amino acid, carotenoids, and fatty acids. Stinging nettle extracts and its compounds, such as rutin, kaempferol, and vitamin A, are also used for their nutritional properties and as anti-inflammatory and antioxidant agents. Future studies should focus on the proper formulation and stability testing of the functional foods containing stinging nettle and their detailed activities in clinical studies.</jats:p

    Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems

    Full text link
    Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.</jats:p

    Attenuation of Cigarette-Smoke-Induced Oxidative Stress, Senescence, and Inflammation by Berberine-Loaded Liquid Crystalline Nanoparticles: In Vitro Study in 16HBE and RAW264.7 Cells

    Get PDF
    Cigarette smoke is considered a primary risk factor for chronic obstructive pulmonary disease. Numerous toxicants present in cigarette smoke are known to induce oxidative stress and airway inflammation that further exacerbate disease progression. Generally, the broncho-epithelial cells and alveolar macrophages exposed to cigarette smoke release massive amounts of oxidative stress and inflammation mediators. Chronic exposure of cigarette smoke leads to premature senescence of airway epithelial cells. This impairs cellular function and ultimately leads to the progression of chronic lung diseases. Therefore, an ideal therapeutic candidate should prevent disease progression by controlling oxidative stress, inflammation, and senescence during the initial stage of damage. In our study, we explored if berberine (an alkaloid)-loaded liquid crystalline nanoparticles (berberine-LCNs)-based treatment to human broncho-epithelial cells and macrophage inhibits oxidative stress, inflammation, and senescence induced by cigarette-smoke extract. The developed berberine-LCNs were found to have favourable physiochemical parameters, such as high entrapment efficiency and sustained in vitro release. The cellular-assay observations revealed that berberine-LCNs showed potent antioxidant activity by suppressing the generation of reactive oxygen species in both broncho-epithelial cells (16HBE) and macrophages (RAW264.7), and modulating the genes involved in inflammation and oxidative stress. Similarly, in 16HBE cells, berberine-LCNs inhibited the cigarette smoke-induced senescence as revealed by X-gal staining, gene expression of CDKN1A (p21), and immunofluorescent staining of p21. Further in-depth mechanistic investigations into antioxidative, anti-inflammatory, and antisenescence research will diversify the current findings of berberine as a promising therapeutic approach for inflammatory lung diseases caused by cigarette smoking.</jats:p

    A kNGR Peptide-Tethered Lipid–Polymer Hybrid Nanocarrier-Based Synergistic Approach for Effective Tumor Therapy: Development, Characterization, Ex-Vivo, and In-Vivo Assessment

    Full text link
    The present study aims to design, develop and characterize kNGR (Asn-Gly-Arg) peptide-conjugated lipid–polymer-based nanoparticles for the target-specific delivery of anticancer bioactive(s), i.e., Paclitaxel (PTX). The kNGR-PEG-DSPE conjugate was synthesized and characterized by using spectral analysis. The dual-targeted PLGA–lecithin–PEG core-shell nanoparticles (PLNs-kNGR-NPs) were synthesized using a modified nanoprecipitation process, and their physiological properties were determined. The results support that, compared to other NPs, PLNs-kNGR-NPs are highly cytotoxic, owing to higher apoptosis and intracellular uptake. The significance of rational nanoparticle design for synergistic treatment is shown by the higher tumor volume inhibition percentage rate (59.7%), compared to other designed formulations in Balb/c mice in the HT-1080 tumor-induced model. The overall results indicate that the PLNs-kNGR-NPs-based hybrid lipid–polymer nanoparticles present the highest therapeutic efficacy against solid tumor overexpressing the CD13 receptors.</jats:p

    Rediscovering the Therapeutic Potential of Agarwood in the Management of Chronic Inflammatory Diseases

    Full text link
    The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients’ overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.</jats:p

    Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases

    Full text link
    Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.</jats:p

    Nutraceuticals and mitochondrial oxidative stress: bridging the gap in the management of bronchial asthma

    Full text link
    AbstractAsthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenuate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.</jats:p
    • …
    corecore