17 research outputs found

    Control of the induction of type I interferon by Peste des petits ruminants virus.

    Get PDF
    Peste des petits ruminants virus (PPRV) is a morbillivirus that produces clinical disease in goats and sheep. We have studied the induction of interferon-β (IFN-β) following infection of cultured cells with wild-type and vaccine strains of PPRV, and the effects of such infection with PPRV on the induction of IFN-β through both MDA-5 and RIG-I mediated pathways. Using both reporter assays and direct measurement of IFN-β mRNA, we have found that PPRV infection induces IFN-β only weakly and transiently, and the virus can actively block the induction of IFN-β. We have also generated mutant PPRV that lack expression of either of the viral accessory proteins (V&C) to characterize the role of these proteins in IFN-β induction during virus infection. Both PPRV_ΔV and PPRV_ΔC were defective in growth in cell culture, although in different ways. While the PPRV V protein bound to MDA-5 and, to a lesser extent, RIG-I, and over-expression of the V protein inhibited both IFN-β induction pathways, PPRV lacking V protein expression can still block IFN-β induction. In contrast, PPRV C bound to neither MDA-5 nor RIG-I, but PPRV lacking C protein expression lost the ability to block both MDA-5 and RIG-I mediated activation of IFN-β. These results shed new light on the inhibition of the induction of IFN-β by PPRV

    The Design and Development of a Multi-HBV Antigen Encoded in Chimpanzee Adenoviral and Modified Vaccinia Ankara Viral Vectors; A Novel Therapeutic Vaccine Strategy against HBV

    Get PDF
    Chronic hepatitis B virus (HBV) infection affects 257 million people globally. Current therapies suppress HBV but viral rebound occurs on cessation of therapy; novel therapeutic strategies are urgently required. To develop a therapeutic HBV vaccine that can induce high magnitude T cells to all major HBV antigens, we have developed a novel HBV vaccine using chimpanzee adenovirus (ChAd) and modified vaccinia Ankara (MVA) viral vectors encoding multiple HBV antigens. ChAd vaccine alone generated very high magnitude HBV specific T cell responses to all HBV major antigens. The inclusion of a shark Invariant (SIi) chain genetic adjuvant significantly enhanced the magnitude of T-cells against HBV antigens. Compared to ChAd alone vaccination, ChAd-prime followed by MVA-boost vaccination further enhanced the magnitude and breadth of the vaccine induced T cell response. Intra-cellular cytokine staining study showed that HBV specific CD8+ and CD4+ T cells were polyfunctional, producing combinations of IFNγ, TNF-α, and IL-2. In summary, we have generated genetically adjuvanted ChAd and MVA vectored HBV vaccines with the potential to induce high-magnitude T cell responses through a prime-boost therapeutic vaccination approach. These pre-clinical studies pave the way for new studies of HBV therapeutic vaccination in humans with chronic hepatitis B infection

    The design and development of a multi-hbv antigen encoded in chimpanzee adenoviral and modified vaccinia ankara viral vectors; a novel therapeutic vaccine strategy against HBV

    No full text
    Chronic hepatitis B virus (HBV) infection affects 257 million people globally. Current therapies suppress HBV but viral rebound occurs on cessation of therapy; novel therapeutic strategies are urgently required. To develop a therapeutic HBV vaccine that can induce high magnitude T cells to all major HBV antigens, we have developed a novel HBV vaccine using chimpanzee adenovirus (ChAd) and modified vaccinia Ankara (MVA) viral vectors encoding multiple HBV antigens. ChAd vaccine alone generated very high magnitude HBV specific T cell responses to all HBV major antigens. The inclusion of a shark Invariant (SIi) chain genetic adjuvant significantly enhanced the magnitude of T-cells against HBV antigens. Compared to ChAd alone vaccination, ChAd-prime followed by MVA-boost vaccination further enhanced the magnitude and breadth of the vaccine induced T cell response. Intra-cellular cytokine staining study showed that HBV specific CD8+ and CD4+ T cells were polyfunctional, producing combinations of IFNγ, TNF-α, and IL-2. In summary, we have generated genetically adjuvanted ChAd and MVA vectored HBV vaccines with the potential to induce high-magnitude T cell responses through a prime-boost therapeutic vaccination approach. These pre-clinical studies pave the way for new studies of HBV therapeutic vaccination in humans with chronic hepatitis B infection

    Enhancing cellular immunogenicity of MVA-vectored vaccines by utilizing the F11L endogenous promoter

    No full text
    Modified vaccinia virus Ankara (MVA)-vectored vaccines against malaria, influenza, tuberculosis and recently Ebola virus are in clinical development. Although this vector is safe and immunogenic in humans, efforts remain on-going to enhance immunogenicity through various approaches such as using stronger promoters to boost transgene expression. We previously reported that endogenous MVA promoters such as pB8 and pF11 increased transgene expression and immunogenicity, as compared to the conventional p7.5 promoter. Here, we show that both promoters also rivalled the mH5 promoter in enhancing MVA immunogenicity. We investigated the mechanisms behind this improved immunogenicity and show that it was a result of strong early transgene expression in vivo, rather than in vitro as would normally be assessed. Moreover, keeping the TK gene intact resulted in a modest improvement in immunogenicity. Utilizing pB8 or pF11 as ectopic promoters at the TK locus instead of their natural loci also increased transgene expression and immunogenicity. In addition to a reporter antigen, the pF11 promoter was tested with the expression of two vaccine antigens for which cellular immunogenicity was significantly increased as compared to the p7.5 promoter. Our data support the use of the pF11 and pB8 promoters for improved immunogenicity in future MVA-vectored candidate vaccines

    Enhancing cellular immunogenicity of MVA-vectored vaccines by utilizing the F11L endogenous promoter

    No full text
    Modified vaccinia virus Ankara (MVA)-vectored vaccines against malaria, influenza, tuberculosis and recently Ebola virus are in clinical development. Although this vector is safe and immunogenic in humans, efforts remain on-going to enhance immunogenicity through various approaches such as using stronger promoters to boost transgene expression. We previously reported that endogenous MVA promoters such as pB8 and pF11 increased transgene expression and immunogenicity, as compared to the conventional p7.5 promoter. Here, we show that both promoters also rivalled the mH5 promoter in enhancing MVA immunogenicity. We investigated the mechanisms behind this improved immunogenicity and show that it was a result of strong early transgene expression in vivo, rather than in vitro as would normally be assessed. Moreover, keeping the TK gene intact resulted in a modest improvement in immunogenicity. Utilizing pB8 or pF11 as ectopic promoters at the TK locus instead of their natural loci also increased transgene expression and immunogenicity. In addition to a reporter antigen, the pF11 promoter was tested with the expression of two vaccine antigens for which cellular immunogenicity was significantly increased as compared to the p7.5 promoter. Our data support the use of the pF11 and pB8 promoters for improved immunogenicity in future MVA-vectored candidate vaccines

    Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel

    No full text
    Background: The COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. Methods: We tested plasma for COVID (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). Results: ELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. Conclusions: Currently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.</p

    Targeting Viral cccDNA for Cure of Chronic Hepatitis B

    Get PDF
    Purpose of Review Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), is amajor cause of advanced liver disease and hepatocellular carcinoma (HCC) worldwide. HBV replication is characterized by the synthesis of covalently closed circular (ccc) DNA which is not targeted by antiviral nucleos(t)ide analogues (NUCs) the key modality of standard of care. While HBV replication is successfully suppressed in treated patients, they remain at risk for developing HCC. While functional cure, characterized by loss of HBsAg, is the first goal of novel antiviral therapies, curative treatments eliminating cccDNA remain the ultimate goal. This review summarizes recent advances in the discovery and development of novel therapeutic strategies and their impact on cccDNA biology. Recent Findings Within the last decade, substantial progress has been made in the understanding of cccDNA biology including the discovery of host dependency factors, epigenetic regulation of cccDNA transcription and immune-mediated degradation. Several approaches targeting cccDNA either in a direct or indirect manner are currently at the stage of discovery, preclinical or early clinical development. Examples include genome-editing approaches, strategies targeting host dependency factors or epigenetic gene regulation, nucleocapsid modulators and immune-mediated degradation. Summary While direct-targeting cccDNA strategies are still largely at the preclinical stage of development, capsid assembly modulators and immune-based approaches have reached the clinical phase. Clinical trials are ongoing to assess their efficacy and safety in patients including their impact on viral cccDNA. Combination therapies provide additional opportunities to overcome current limitations of individual approaches
    corecore