9 research outputs found

    HLA-class I markers and multiple sclerosis susceptibility in the Italian population

    Get PDF
    Previous studies reported an association with multiple sclerosis (MS) of distinct HLA-class I markers, namely HLA-A*02, HLA-Cw*05 and MOG-142L. In this work, we tested the association with MS of A*02 and Cw*05 in 1273 Italian MS patients and 1075 matched controls, which were previously analyzed for MOG-142, and explored the relationship among these three markers in modulating MS risk. HLA-A*02 conferred a statistically robust MS protection (odds ratio, OR=0.61; 95% confidence intervals, CI=0.51–0.72, P<10−9), which was independent of DRB1*15 and of any other DRB1* allele and remained similar after accounting for the other two analyzed class I markers. Conversely, the protective effect we previously observed for MOG-142L was secondary to its linkage disequilibrium with A*02. Cw*05 was not associated considering the whole sample, but its presence significantly enhanced the protection in the HLA-A*02-positive group, independently of DRB1: the OR conferred by A*02 in Cw*05-positive individuals (0.22, 95% CI=0.13–0.38) was significantly lower than in Cw*05-negative individuals (0.69, 95% CI=0.58–0.83) with a significant (P=4.94 × 10−5) multiplicative interaction between the two markers. In the absence of A*02, Cw*05 behaved as a risk factor, particularly in combination with DRB1*03 (OR=3.89, P=0.0006), indicating that Cw*05 might be a marker of protective or risk haplotypes, respectively

    Conserved extended haplotypes of the major histocompatibility complex: further characterization

    No full text
    Since the complete sequencing of a human major histocompatibility complex (MHC) haplotype, interest in non-human leucocyte antigen (HLA) genes encoded in the MHC has been growing. Non-HLA genes, which outnumber the HLA genes, may contribute to or account for HLA and disease associations. Most information on non-HLA genes has been obtained in separate studies of individual loci. To comprehensively address polymorphisms of relevant non-HLA genes in 'conserved extended haplotypes' (CEH), we investigated 101 International Histocompatibility Workshop reference cell lines and nine additional anonymous samples representing all 37 unambiguously characterized CEHs at MICA, NFKBIL1, LTA, NCR3, AIF1, HSPA1A, HSPA1B, BF, NOTCH4 and a single nucleotide polymorphism (SNP) at HLA-DQA1 as well as MICA, NOTCH4, HSPA1B and all five tumour necrosis factor short tandem repeat (STR) polymorphisms. This work (1) provides an extensive catalogue of MHC polymorphisms in all CEHs, (2) unravels interrelationships between HLA and non-HLA haplotypical lineages, (3) resolves reported typing ambiguities and (4) describes haplospecific markers for a number of CEHs. Analysis also identified a DQA1 SNP and segments containing MHC class III polymorphisms that corresponded with class II (DRB3 and DRB4) lineages. These results portray the MHC where lineages containing non-HLA and HLA variants in linkage disequilibrium may operate in concert and can guide more thorough design and interpretation of HLA-disease relationships

    The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates

    No full text

    Comparative genomics of major histocompatibility complexes

    No full text
    corecore