8 research outputs found

    Use of intraventricular ribbon gauze to reduce particulate emboli during aortic valve replacement

    Get PDF
    BACKGROUND: The incidence of cerebrovascular accidents following aortic valve surgery remains a devastating complication. The aim of this study was to determine the number of potential embolic material arising during aortic valve replacement and to examine the efficacy of using ribbon gauze in the left ventricle during removal of the native valve and decalcification of the aortic annulus. METHODS: Ribbon gauze was inserted into the left ventricular cavity prior to aortic valve excision in an unselected, prospectively studied series of 30 patients undergoing aortic valve replacement. A further 30 lengths of ribbon gauze were soaked in the pericardiotomy blood of the same patients and all were subjected to histological analysis. RESULTS: The median number of tissue fragments from the aortic valve replacement group was significantly higher than in the control group 5 (0–18) versus 0 (0–1) (p = 3.6 × 10(-5)). The size of tissue fragments varied between 0.1 and 9.0 mm with a mean of 0.61 ± 1.12 mm and a median of 0.2 mm. There was a significantly higher number of tissue fragments associated with patients having surgery for aortic stenosis when compared with patients who had aortic regurgitation with median of 5 (0–18) versus 0 (0–3) (p = 0.8 × 10(-3)). CONCLUSION: Significant capture of particulate debris by the intraventricular ribbon gauze suggests that the technique of left ventricular ribbon gauze insertion during aortic valve excision has merit

    Silent cerebral infarct after cardiac catheterization as detected by diffusion weighted Magnetic Resonance Imaging: a randomized comparison of radial and femoral arterial approaches

    Get PDF
    Background and objective: Cerebral microembolism detected by transcranial Doppler (TCD) occurs systematically during cardiac catheterization, but its clinical relevance, remains unknown. Studies suggest that asymptomatic embolic cerebral infarction detectable by diffusion-weighted (DW) MRI might exist after percutaneous cardiac interventions with a frequency as high as 15 to 22% of cases. We have set up, for the first time, a prospective multicenter trial to assess the rate of silent cerebral infarction after cardiac catheterization and to compare the impact of the arterial access site, comparing radial and femoral access, on this phenomenon. Study design: This prospective study will be performed in patients with severe aortic valve stenosis. To assess the occurrence of cerebral infarction, all patients will undergo cerebral DW-MRI and neurological assessment within 24 hours before, and 48 hours after cardiac catheterization and retrograde catheterization of the aortic valve. Randomization for the access site will be performed before coronary angiography. A subgroup will be monitored by transcranial power M-mode Doppler during cardiac catheterization to observe cerebral blood flow and track emboli. Neuropsychological tests will also be recorded in a subgroup of patients before and after the interventional procedures to assess the impact of silent brain injury on potential cognitive decline. The primary end-point of the study is a direct comparison of ischemic cerebral lesions as detected by serial cerebral DW-MRI between patients explored by radial access and patients explored by femoral access. Secondary end-points include comparison of neuropsychological test performance and number of microembolism signals observed in the two groups. Implications: Using serial DW-MRI, silent cerebral infarction rate will be defined and the potential influence of vascular access site will be evaluated. Silent cerebral infarction might be a major concern during cardiac catheterization and its potential relationship to cognitive decline needs to be assessed. Study registration: The SCIPION study is registered through National Institutes of Health-sponsored clinical trials registry and has been assigned the Identifier: NCT 00329979
    corecore