27 research outputs found

    The relation of steady evaporating drops fed by an influx and freely evaporating drops

    Full text link
    We discuss a thin film evolution equation for a wetting evaporating liquid on a smooth solid substrate. The model is valid for slowly evaporating small sessile droplets when thermal effects are insignificant, while wettability and capillarity play a major role. The model is first employed to study steady evaporating drops that are fed locally through the substrate. An asymptotic analysis focuses on the precursor film and the transition region towards the bulk drop and a numerical continuation of steady drops determines their fully non-linear profiles. Following this, we study the time evolution of freely evaporating drops without influx for several initial drop shapes. As a result we find that drops initially spread if their initial contact angle is larger than the apparent contact angle of large steady evaporating drops with influx. Otherwise they recede right from the beginning

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    A new continuum model of the incoherent interface compared with growth of a spinel rim on an olivine grain

    No full text
    In a polymorphic change in which the phases differ only by a reversible difference in specific volume, kinematics requires a unit mass to suffer deviatoric strain in the instant it is transformed. Unlike the Eshelby stress–free strain, this strain is a property of the motion. Its existence must be considered when formulating the constitutive relation for the product of an incoherent transformation. To show this, two models are compared: in both, the (Nabarro) condition of vanishing shear stress is imposed at the incoherent interface; they differ only in the treatment of the deviatoric strain at issue. In the existing model, deviatoric stress within a unit mass of product is determined by total deviatoric strain from its initial state as parent phase. In the new model, lattice reconstruction is assumed to erase all memory within the unit mass of deviatoric strain suffered before, or during, its transformation. The existing model is not consistent with experiments on the olivine spinel–phase change in single crystals. It predicts that when the pressure applied exceeds a critical value, samples should transform completely at almost constant rate; instead, growth is seen to slow, and may even cease. The new model predicts this. Without adjustable constants, fair agreement is obtained with experiments on samples having 75–200 ppmw of water. Because elastic deformation by itself can explain those observations, the very thin rims seen on even drier samples suggest that water may be essential to lattice reconstruction in this phase change

    The evaporating meniscus in a channel

    No full text
    corecore