720 research outputs found

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Dynamical Models in Quantitative Genetics

    Get PDF
    In this paper the author investigates models in quantitative genetics and shows that under quite reasonable assumptions the dynamics can display rather counter-intuitive behavior. This research was conducted as part of the Dynamics of Macrosystems Feasibility Study in the System and Decision Sciences Program

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts

    Get PDF
    Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology

    Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    Get PDF
    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity

    A polymorphism in the gene encoding carnosinase (CNDP1) as a predictor of mortality and progression from nephropathy to end-stage renal disease in type 1 diabetes mellitus

    Get PDF
    Aims/hypothesis Homozygosity for a five leucine repeat (5L-5L) in the carnosinase gene (CNDP1) has been found to be cross-sectionally associated with a low frequency of diabetic nephropathy (DN), mainly in type 2 diabetes. We prospectively investigated in patients with type I diabetes whether: (1) 5L-5L is associated with mortality; (2) there is an interaction of 5L-5L with DN or sex for prediction of mortality; and (3) 5L-5L is associated with progression to end-stage renal disease (ESRD). Methods In this prospective study in white European patients with type 1 diabetes, individuals with DN were defined by persistent albuminuria >= 300 mg/24 h. Controls without nephropathy were defined by persistent (>15 years) normoalbuminuria Results The study involved 916 patients with DN and 1,170 controls. During follow-up for 8.8 years, 107 patients (14%) with 5L-5L died compared with 182 patients (13.8%) with other genotypes (p=0.99). There was no significant interaction of 5L-5L with DN for prediction of mortality (p=0.57), but a trend towards interaction with sex (p=0.08). In patients with DN, HR for ESRD in 5L-5L vs other genotypes was not constant over time, with increased risk for 5L-5L beyond 8 years of follow-up (p=0.03). Conclusions/interpretation CNDP1 polymorphism was not associated with mortality, and nor was there an interaction of this polymorphism with DN for prediction of mortality in patients with type 1 diabetes. CNDP1 polymorphism predicts progression to ESRD in patients with DN, but only late after baseline measurements

    HLA-DR Alpha 2 Mediates Negative Signalling via Binding to Tirc7 Leading to Anti-Inflammatory and Apoptotic Effects in Lymphocytes In Vitro and In Vivo

    Get PDF
    Classically, HLA-DR expressed on antigen presenting cells (APC) initiates lymphocyte activation via presentation of peptides to TCR bearing CD4+ T-Cells. Here we demonstrate that HLA-DR alpha 2 domain (sHLA-DRα2) also induces negative signals by engaging TIRC7 on lymphocytes. This interaction inhibits proliferation and induces apoptosis in CD4+ and CD8+ T-cells via activation of the intrinsic pathway. Proliferation inhibition is associated with SHP-1 recruitment by TIRC7, decreased phosphorylation of STAT4, TCR-ζ chain & ZAP70, and inhibition of IFN-γ and FasL expression. HLA-DRα2 and TIRC7 co-localize at the APC-T cell interaction site. Triggering HLA-DR - TIRC7 pathway demonstrates that sHLA-DRα2 treatment inhibits proinflammatory-inflammatory cytokine expression in APC & T cells after lipopolysaccaride (LPS) stimulation in vitro and induces apoptosis in vivo. These results suggest a novel antiproliferative role for HLA-DR mediated via TIRC7, revise the notion of an exclusive stimulatory interaction of HLA-DR with CD4+ T cells and highlights a novel physiologically relevant regulatory pathway

    Modulation of apoptosis in human hepatocellular carcinoma (HepG2 cells) by a standardized herbal decoction of Nigella sativa seeds, Hemidesmus indicus roots and Smilax glabra rhizomes with anti- hepatocarcinogenic effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A standardized poly-herbal decoction of <it>Nigella sativa </it>seeds, <it>Hemidesmus indicus </it>roots and <it>Smilax glabra </it>rhizomes used traditionally in Sri Lanka for cancer therapy has been demonstrated previously, to have anti-hepatocarcinogenic potential. Cytotoxicity, antioxidant activity, anti-inflammatory activity, and up regulation of p53 and p21 activities are considered to be some of the possible mechanisms through which the above decoction may mediate its anti-hepatocarcinogenic action. The main aim of the present study was to determine whether apoptosis is also a major mechanism by which the decoction mediates its anti-hepatocarcinogenic action.</p> <p>Methods</p> <p>Evaluation of apoptosis in HepG2 cells was carried out by (a) microscopic observations of cell morphology, (b) DNA fragmentation analysis, (c) activities of caspase 3 and 9, as well as by (d) analysis of the expression of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins associated with cell death.</p> <p>Results</p> <p>The results demonstrated that in HepG2 cells, the decoction can induce (a) DNA fragmentation and (b) characteristic morphological changes associated with apoptosis (nuclear condensation, membrane blebbing, nuclear fragmentation and apoptotic bodies). The decoction could also, in a time and dose dependent manner, up regulate the expression of the pro-apoptotic gene <it>Bax </it>and down regulate expression of anti-apoptotic <it>Bcl-2 </it>gene (as evident from RT-PCR analysis, immunohistochemistry and western blotting). Further, the decoction significantly (<it>p </it>< .001) enhanced the activities of caspase-3 and caspase-9 in a time and dose dependent manner.</p> <p>Conclusions</p> <p>Overall findings provide confirmatory evidence to demonstrate that the decoction may mediate its reported anti-hepatocarcinogenic effect, at least in part, through modulation of apoptosis.</p

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
    corecore