66 research outputs found

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2—Diagnostic criteria and appropriate utilization

    Get PDF
    Cardiac amyloidosis is emerging as an underdiagnosed cause of heart failure and mortality. Growing literature suggests that a noninvasive diagnosis of cardiac amyloidosis is now feasible. However, the diagnostic criteria and utilization of imaging in cardiac amyloidosis are not standardized. In this paper, Part 2 of a series, a panel of international experts from multiple societies define the diagnostic criteria for cardiac amyloidosis and appropriate utilization of echocardiography, cardiovascular magnetic resonance imaging, and radionuclide imaging in the evaluation of patients with known or suspected cardiac amyloidosis

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging

    Get PDF
    Cardiac amyloidosis is a form of restrictive infiltrative cardiomyopathy that confers significant mortality. Due to the relative rarity of cardiac amyloidosis, clinical and diagnostic expertise in the recognition and evaluation of individuals with suspected amyloidosis is mostly limited to a few expert centers. Electrocardiography, echocardiography, and radionuclide imaging have been used for the evaluation of cardiac amyloidosis for over 40 years.1-3 Although cardiovascular magnetic resonance (CMR) has also been in clinical practice for several decades, it was not applied to cardiac amyloidosis until the late 1990s. Despite an abundance of diagnostic imaging options, cardiac amyloidosis remains largely underrecognized or delayed in diagnosis.4 While advanced imaging options for noninvasive evaluation have substantially expanded, the evidence is predominately confined to single-center small studies or limited multicenter larger experiences, and there continues to be no clear consensus on standardized imaging pathways in cardiac amyloidosis. This lack of guidance is particularly problematic given that there are numerous emerging therapeutic options for this morbid disease, increasing the importance of accurate recognition at earlier stages. Imaging provides non-invasive tools for follow-up of disease remission/progression complementing clinical evaluation. Additional areas not defined include appropriate clinical indications for imaging, optimal imaging utilization by clinical presentation, accepted imaging methods, accurate image interpretation, and comprehensive and clear reporting. Prospective randomized clinical trial data for the diagnosis of amyloidosis and for imaging-based strategies for treatment are not available. A consensus of expert opinion is greatly needed to guide the appropriate clinical utilization of imaging in cardiac amyloidosis

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging

    Get PDF
    Cardiac amyloidosis is a form of restrictive infiltrative cardiomyopathy that confers significant mortality. Because of the relative rarity of cardiac amyloidosis, clinical and diagnostic expertise in the recognition and evaluation of individuals with suspected amyloidosis is mostly limited to a few expert centers. Electrocardiography, echocardiography, and radionuclide imaging have been used for the evaluation of cardiac amyloidosis for over 40 years.1, 2, 3 Although cardiovascular magnetic resonance (CMR) has also been in clinical practice for several decades, it was not applied to cardiac amyloidosis until the late 1990s. Despite an abundance of diagnostic imaging options, cardiac amyloidosis remains largely underrecognized or delayed in diagnosis.4 Although advanced imaging options for noninvasive evaluation have substantially expanded, the evidence is predominately confined to single-center small studies or limited multicenter larger experiences, and there continues to be no clear consensus on standardized imaging pathways in cardiac amyloidosis. This lack of guidance is particularly problematic given that there are numerous emerging therapeutic options for this morbid disease, increasing the importance of accurate recognition at earlier stages. Imaging provides noninvasive tools for follow-up of disease remission/progression complementing clinical evaluation. Additional areas not defined include appropriate clinical indications for imaging, optimal imaging utilization by clinical presentation, accepted imaging methods, accurate image interpretation, and comprehensive and clear reporting. Prospective randomized clinical trial data for the diagnosis of amyloidosis and for imaging-based strategies for treatment are not available. A consensus of expert opinion is greatly needed to guide the appropriate clinical utilization of imaging in cardiac amyloidosis

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2—Diagnostic Criteria and Appropriate Utilization

    Get PDF
    Cardiac amyloidosis is emerging as an underdiagnosed cause of heart failure and mortality. Growing literature suggests that a noninvasive diagnosis of cardiac amyloidosis is now feasible. However, the diagnostic criteria and utilization of imaging in cardiac amyloidosis are not standardized. In this paper, Part 2 of a series, a panel of international experts from multiple societies define the diagnostic criteria for cardiac amyloidosis and appropriate utilization of echocardiography, cardiovascular magnetic resonance imaging, and radionuclide imaging in the evaluation of patients with known or suspected cardiac amyloidosis

    Inhaled corticosteroids in childhood asthma: the story continues

    Get PDF
    Inhaled corticosteroids (ICS) are the most effective anti-inflammatory drugs for the treatment of persistent asthma in children. Treatment with ICS decreases asthma mortality and morbidity, reduces symptoms, improves lung function, reduces bronchial hyperresponsiveness and reduces the number of exacerbations. The efficacy of ICS in preschool wheezing is controversial. A recent task force from the European Respiratory Society on preschool wheeze defined two different phenotypes: episodic viral wheeze, wheeze that occurs only during respiratory viral infections, and multiple-trigger wheeze, where wheeze also occurs in between viral episodes. Treatment with ICS appears to be more efficacious in the latter phenotype. Small particle ICS may offer a potential benefit in preschool children because of the favourable spray characteristics. However, the efficacy of small particle ICS in preschool children has not yet been evaluated in prospective clinical trials. The use of ICS in school children with asthma is safe with regard to systemic side effects on the hypothalamic–pituitary–adrenal axis, growth and bone metabolism, when used in low to medium doses. Although safety data in wheezing preschoolers is limited, the data are reassuring. Also for this age group, adverse events tend to be minimal when the ICS is used in appropriate doses

    A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology

    Full text link

    Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation

    Get PDF
    Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic nonsteroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4- aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter antiinflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs
    • …
    corecore