5 research outputs found

    Cloning and characterization of DGAT1 gene of Riverine buffalo

    No full text
    The present study was carried out to characterize the DGAT1 gene of Riverine buffalo. Total RNA was extracted from the mammary tissue of buffalo and DGAT1cDNA were synthesized by RT-PCR, then cloned using pDRIVE cloning vector and sequenced. The sequencing revealed that the size of DGAT1 gene was 1470 bp with GC content of 62.30%. The gene encoded for 489 amino acid precursors and that it possessed 32 amino acids signal peptide. The similarity of buffalo DGAT1 mRNA sequence with that of cattle, pig, monkey, human, mice and rat were determined as 98.4, 90.7, 85.4, 85.0, 77.4 and 77.1%, respectively. Phylogenetic tree constructed from the derived DGAT1 protein sequences of 15 different species illustrated a unique branches for mammals, fly, nematode and plants. Among mammals, cattle and buffalo grouped together, whereas swine formed another group in the same branch. Four motifs were predicted in buffalo DGAT1 peptide sequence, one N-linked glycosylation site (246th position), two putative tyrosine phosphorylation site (316 and 261), one putative diacylglycerol binding site (382–392 amino acid position) and a conserved domain MBOAT (membrane bound acyl transferase from 150 to 474 amino acids) with a histidine as an active residue

    The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20

    No full text
    Peroxisomal matrix protein import uses two peroxisomal targeting signals (PTSs). Most matrix proteins use the PTS1 pathway and its cargo receptor, Pex5. The PTS2 pathway is dependent on another receptor, Pex7, and its coreceptor, Pex20. We found that during the matrix protein import cycle, the stability and dynamics of Pex7 differ from those of Pex5 and Pex20. In Pichia pastoris, unlike Pex5 and Pex20, Pex7 is constitutively degraded in wild-type cells but is stabilized in pex mutants affecting matrix protein import. Degradation of Pex7 is more prevalent in cells grown in methanol, in which the PTS2 pathway is nonessential, in comparison with oleate, suggesting regulation of Pex7 turnover. Pex7 must shuttle into and out of peroxisomes before it is polyubiquitinated and degraded by the proteasome. The shuttling of Pex7, and consequently its degradation, is dependent on the receptor recycling pathways of Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. We also found that blocking the export of Pex20 from peroxisomes inhibits PTS1-mediated import, suggesting sharing of limited components in the export of PTS receptors/coreceptors. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20, exemplifying a novel interdependence of the PTS1 and PTS2 pathways

    Preventing low birth weight: is prenatal care the answer?

    No full text
    corecore