20 research outputs found
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km
For more than 80 years, the counterintuitive predictions of quantum theory
have stimulated debate about the nature of reality. In his seminal work, John
Bell proved that no theory of nature that obeys locality and realism can
reproduce all the predictions of quantum theory. Bell showed that in any local
realist theory the correlations between distant measurements satisfy an
inequality and, moreover, that this inequality can be violated according to
quantum theory. This provided a recipe for experimental tests of the
fundamental principles underlying the laws of nature. In the past decades,
numerous ingenious Bell inequality tests have been reported. However, because
of experimental limitations, all experiments to date required additional
assumptions to obtain a contradiction with local realism, resulting in
loopholes. Here we report on a Bell experiment that is free of any such
additional assumption and thus directly tests the principles underlying Bell's
inequality. We employ an event-ready scheme that enables the generation of
high-fidelity entanglement between distant electron spins. Efficient spin
readout avoids the fair sampling assumption (detection loophole), while the use
of fast random basis selection and readout combined with a spatial separation
of 1.3 km ensure the required locality conditions. We perform 245 trials
testing the CHSH-Bell inequality and find . A
null hypothesis test yields a probability of that a local-realist
model for space-like separated sites produces data with a violation at least as
large as observed, even when allowing for memory in the devices. This result
rules out large classes of local realist theories, and paves the way for
implementing device-independent quantum-secure communication and randomness
certification.Comment: Raw data will be made available after publicatio
