919 research outputs found

    Taking laser Doppler vibrometry off the tripod: correction of measurements affected by instrument vibration

    Get PDF
    Β© 2016 Elsevier Ltd Laser Doppler vibrometers (LDVs) are now well-established as an effective non-contact alternative to traditional contacting transducers. Despite 30 years of successful applications, however, very little attention has been given to sensitivity to vibration of the instrument itself. In this paper, the sensitivity to instrument vibration is confirmed before development theoretically and experimentally of a practical scheme to enable correction of measurements for arbitrary instrument vibration. The scheme requires a pair of correction sensors with appropriate orientation and relative location, while using frequency domain processing to accommodate inter-channel time delay and signal integrations. Error reductions in excess of 30 dB are delivered in laboratory tests with simultaneous instrument and target vibration over a broad frequency range. Ultimately, application to measurement on a vehicle simulator experiencing high levels of vibration demonstrates the practical nature of the correction technique and its robustness in a challenging measurement environment

    Towards laser Doppler vibrometry from unmanned aerial vehicles

    Full text link
    Β© 2019 Published under licence by IOP Publishing Ltd. Laser Doppler vibrometers are technically well suited to general application but they offer special benefits in a variety of challenging measurement scenarios which are now well documented and accepted. An interesting and potentially powerful example of such a challenging measurement scenario is one where the laser vibrometer is mounted on/in an unmanned aerial vehicle in order that autonomous measurement campaigns can be undertaken in remote and/or harsh environments. One important challenge to overcome in such a scenario is the measurement sensitivity to vibration of the instrument itself or indeed of any steering optics used to point the probe laser beam toward the target of interest. In this paper, recently reported means by which this measurement sensitivity can be rectified by simultaneously obtained correction measurements will be developed. Specifically, this development is intended to lead towards laser Doppler vibrometry from unmanned aerial vehicles (UAVs) with correction of instrument motion being presented herein for the first time from a single, rather than a pair of, uniaxial accelerometers

    Vibration measurements using continuous scanning laser vibrometry: Advanced aspects in rotor applications

    Get PDF
    This paper builds on previous work concerned with the development of a comprehensive velocity sensitivity model for continuous scanning Laser Vibrometry. This versatile model predicts the measured velocity for arbitrary mirror scan angles and arbitrary target motion and it has been especially valuable in revealing the sources of additional components seen in continuous scanning and tracking measurements on rotors. The application to vibration measurements on rotors is the particular focus of this paper which includes, for the first time, a three-dimensional consideration of the incident point on the target and validation of the DC component of measured velocity leading to evaluation of the individual components of the small but inevitable misalignments between the rotor and optical axes. This has not previously been possible. Misalignments in the region 0.5 mm and 0.5Β° were found and the model shows how additional components of the order 10-20 mm/s result for typical measurements. Such levels are significant as they are comparable with vibration levels likely in real applications and, if unexpected, may lead to data misinterpretation. The first thorough analysis of laser speckle effects in scanning Laser Vibrometer measurements on rotors is presented in the form of a speckle repeat map, together with experimental data quantifying the dramatic reduction in speckle noise found in tracking measurements. Finally, the velocity sensitivity model and the description of laser speckle effects are used to enable confident interpretation of data from a series of measurements on a rotating bladed disc. Β© 2005 Elsevier Ltd. All rights reserved

    Vibration measurements using continuous scanning laser Doppler vibrometry: Theoretical velocity sensitivity analysis with applications

    Get PDF
    It is readily accepted that a laser vibrometer measures target velocity in the direction of the incident laser beam, but this measured velocity must be considered in terms of the various components of the target velocity. This paper begins with a review of the theoretical description of the velocity sensed by a single laser beam incident in an arbitrary direction on a rotating target undergoing arbitrary vibration. The measured velocity is presented as the sum of six terms, each the product of a combination of geometric parameters, relating to the laser beam orientation, and a combination of motion parameters-the 'vibration sets'. This totally general velocity sensitivity model can be applied to any measurement configuration on any target. The model is also sufficiently versatile to incorporate time-dependent beam orientation and this is described in this paper, with reference to continuous scanning laser Doppler vibrometry. For continuous scanning applications, the velocity sensitivity model is shown formulated in two useful ways. The first is in terms of the laser beam orientation angles, developing the original model to include time dependency in the angles, whilst the second is an entirely new development in which the model is written in terms of the mirror scan angles, since it is these which the operator would seek to control in practice. In the original derivation, the illuminated section of the rotating target was assumed to be of rigid cross section but, since continuous scanning measurements are employed on targets with flexible cross sections, such as beams, panels and thin or bladed discs, the theory is developed in this paper for the first time to include provision for such flexibility

    Vibration measurements using continuous scanning laser vibrometry: Velocity sensitivity model experimental validation

    Get PDF
    This paper builds on a previous study in which the theoretical description of the velocity sensed by a single laser beam incident in an arbitrary direction on a rotating target undergoing arbitrary vibration was extended to continuous scanning laser vibrometer measurements on targets with flexible cross sections. The velocity sensitivity model was written in terms of either laser beam orientation angles or deflection mirror scan angles, with the latter found to be the most useful for continuous scanning applications. The model enables the prediction of the laser vibrometer output for any measurement configuration on any target. The experimental validation presented in this paper confirms that additional components appear in rotating target measurements that are associated with both the scanning system configuration and any misalignment between the scanning system and target rotation axes. This paper will show how use of the velocity sensitivity model enables the vibration engineer to make laser Doppler vibrometry measurements with confidence

    Radial vibration measurements directly from rotors using laser vibrometry: The effects of surface roughness, instrument misalignments and pseudo-vibration

    Get PDF
    Laser Doppler vibrometry (LDV) offers an attractive solution when radial vibration measurement directly from a rotor surface is required. Research to date has demonstrated application on polished-circular rotors and rotors coated with retro-reflective tape. In the latter case, however, a significant cross-sensitivity to the orthogonal radial vibration component occurs and post-processing is required to resolve individual radial vibration components. Until now, the fundamentally different behaviour observed between these cases has stood as an inconsistency in the published literature, symptomatic of the need to understand the effect of surface roughness. This paper offers the first consistent mathematical description of the polished-circular and rough rotor behaviours, combined with an experimental investigation of the relationship between surface roughness and cross-sensitivity. Rotors with surface roughness up to 10 nm satisfy the polished-circular rotor definition if vibration displacement is below 100% beam diameter, for a 90 ΞΌm beam, and below 40% beam diameter, for a 520 ΞΌm beam. On rotors with roughness between 10 nm and 50 nm, the polished-circular rotor definition is satisfied for vibration displacements up to 25% beam diameter, for a 90 ΞΌm beam, and up to 10% beam diameter, for a 520 ΞΌm beam. As roughness increases, cross-sensitivity increases but only rotors coated in retro-reflective tape satisfied the rough rotor definition fully. Consequently, when polished-circular surfaces are not available, rotor surfaces must be treated with retro-reflective tape and measurements post-processed to resolve individual vibration components. Through simulations, the value of the resolution and correction algorithms that form the post-processor has been demonstrated quantitatively. Simulations incorporating representative instrument misalignments and measurement noise have enabled quantification of likely error levels in radial vibration measurements. On a polished-circular rotor, errors around 0.2% for amplitude and 2 mrad for phase are likely, rising a little at the integer orders affected by pseudo-vibration. Higher pseudo-vibration levels and the need for resolution increase errors in the rough rotor measurements, especially around the synchronous frequency where errors reach 20% by amplitude and 100 mrad for phase. Outside a range of half an order either side of first order, errors are ten times lower and beyond fifth order errors are similar to those for the polished-circular rotor. Further simulations were performed to estimate sensitivities to axial vibration, speed variation and bending vibrations. Β© 2012 Elsevier Ltd

    Understanding the Dynamic Behaviour of a Tennis Racket under Play Conditions

    Get PDF
    The 'feel' of tennis rackets is of increasing importance to manufacturers seeking product differentiation in a context where further performance enhancements are prevented by a combination of mechanical limits and regulations imposed to protect the integrity of the sport. Vibrations excited during a shot contribute greatly to the perception of 'feel'. Previous studies have been reported but none has covered the full set of mode families or the frequency range in this study. In-plane vibrations associated with the routine use of topspin shots in modern tennis have not been documented so far in the literature. To consider modal behaviour, multiple measurements during play conditions are required but this is practically impossible. This paper proposes an alternative approach and successfully relates a comprehensive modal analysis on a freely suspended racket to vibration measurements under play conditions. This is achieved through an intermediate stage comprising a necessarily more limited modal analysis on a hand-gripped racket and use of the mass modification modal analysis tool. This stage confirmed the prevailing view that hand-gripping can be considered as a mass modification distributed along the handle of the freely suspended racket but the associated mass was much lower than that of an actual hand and the hand also increased the damping ratio of frame modes significantly. Furthermore, in frame vibration measurements during forehand groundstrokes, a greater reduction in bending mode frequencies was observed, consistent with a mass-loading of around 25 % of the actual hand as a consequence of the tighter grip. In these play tests, the first two bending modes, the first torsional mode, the first eight stringbed modes, the first three hoop modes and the third in-plane bending mode were identified, with the stringbed modes being particularly prominent. Β© 2013 Society for Experimental Mechanics

    Output-Only Modal Analysis Using Continuous-Scan Laser Doppler Vibrometry and Application to a 20kW Wind Turbine

    Full text link
    Continuous-scan laser Doppler vibrometry (CSLDV) is a method whereby one continuously sweeps the laser measurement point over a structure while measuring, in contrast to the conventional scanning LDV approach where the laser spot remains stationary while the response is collected at each point. The continuous-scan approach can greatly accelerate measurements, allowing one to capture spatially detailed mode shapes along a scan path in the same amount of time that is typically required to measure the response at a single point. The method is especially beneficial when testing large structures, such as wind turbines, whose natural frequencies are very low and hence require very long time records. Several CSLDV methods have been presented that employ harmonic excitation or impulse excitation, but no prior work has performed CSLDV with an unmeasured, broadband random input. This work extends CSLDV to that class of input, developing an output-only CSLDV method (OMA-CSLDV). This is accomplished by adapting a recently developed algorithm for linear time-periodic systems to the CSLDV measurements, which makes use of harmonic power spectra and the harmonic transfer function concept developed by Wereley. The proposed method is validated on a randomly excited free-free beam, where one-dimensional mode shapes are captured by scanning the laser along the length of the beam. The natural frequencies and mode shapes are extracted from the harmonic power spectrum of the vibrometer signal and show good agreement with the first seven analytically-derived modes of the beam. The method is then applied to identify the shapes of several modes of a 20kW wind turbine using a ground based laser and with only a light breeze providing excitation.

    To Test or to Treat? An Analysis of Influenza Testing and Antiviral Treatment Strategies Using Economic Computer Modeling

    Get PDF
    BACKGROUND: Due to the unpredictable burden of pandemic influenza, the best strategy to manage testing, such as rapid or polymerase chain reaction (PCR), and antiviral medications for patients who present with influenza-like illness (ILI) is unknown.\ud \ud METHODOLOGY/PRINCIPAL FINDINGS: We developed a set of computer simulation models to evaluate the potential economic value of seven strategies under seasonal and pandemic influenza conditions: (1) using clinical judgment alone to guide antiviral use, (2) using PCR to determine whether to initiate antivirals, (3) using a rapid (point-of-care) test to determine antiviral use, (4) using a combination of a point-of-care test and clinical judgment, (5) using clinical judgment and confirming the diagnosis with PCR testing, (6) treating all with antivirals, and (7) not treating anyone with antivirals. For healthy younger adults (<65 years old) presenting with ILI in a seasonal influenza scenario, strategies were only cost-effective from the societal perspective. Clinical judgment, followed by PCR and point-of-care testing, was found to be cost-effective given a high influenza probability. Doubling hospitalization risk and mortality (representing either higher risk individuals or more virulent strains) made using clinical judgment to guide antiviral decision-making cost-effective, as well as PCR testing, point-of-care testing, and point-of-care testing used in conjunction with clinical judgment. For older adults (> or = 65 years old), in both seasonal and pandemic influenza scenarios, employing PCR was the most cost-effective option, with the closest competitor being clinical judgment (when judgment accuracy > or = 50%). Point-of-care testing plus clinical judgment was cost-effective with higher probabilities of influenza. Treating all symptomatic ILI patients with antivirals was cost-effective only in older adults.\ud \ud CONCLUSIONS/SIGNIFICANCE: Our study delineated the conditions under which different testing and antiviral strategies may be cost-effective, showing the importance of accuracy, as seen with PCR or highly sensitive clinical judgment.\ud \u

    Augmented Lung Inflammation Protects against Influenza A Pneumonia

    Get PDF
    Influenza pneumonia causes high mortality every year, and pandemic episodes kill millions of people. Influenza-related mortality has been variously ascribed to an ineffective host response that fails to limit viral replication, an excessive host inflammatory response that results in lung injury and impairment of gas exchange, or to bacterial superinfection. We sought to determine whether lung inflammation promoted or impaired host survival in influenza pneumonia.To distinguish among these possible causes of influenza-related death, we induced robust lung inflammation by exposing mice to an aerosolized bacterial lysate prior to challenge with live virus. The treatment induced expression of the inflammatory cytokines IL-6 and TNF in bronchoalveolar lavage fluid 8- and 40-fold greater, respectively, than that caused by lethal influenza infection. Yet, this augmented inflammation was associated with striking resistance to host mortality (0% vs 90% survival, pβ€Š=β€Š0.0001) and reduced viral titers (pβ€Š=β€Š0.004). Bacterial superinfection of virus infected lungs was not observed. When mice were repeatedly exposed to the bacterial lysate, as would be clinically desirable during an influenza epidemic, there was no tachyphylaxis of the induced viral resistance. When the bacterial lysate was administered after the viral challenge, there was still some mortality benefit, and when ribavirin was added to the aerosolized bacterial lysate, host survival was synergistically improved (0% vs 93.3% survival, p<0.0001).Together, these data indicate that innate immune resistance to influenza can be effectively stimulated, and suggest that ineffective rather than excessive inflammation is the major cause of mortality in influenza pneumonia
    • …
    corecore