23 research outputs found

    Effectiveness of an online curriculum for medical students on genetics, genetic testing and counseling

    Get PDF
    Background: It is increasingly important that physicians have a thorough understanding of the basic science of human genetics and the ethical, legal and social implications (ELSI) associated with genetic testing and counseling. Methods: The authors developed a series of web-based courses for medical students on these topics. The course modules are interactive, emphasize clinical case studies, and can easily be incorporated into existing medical school curricula. Results: Results of a ‘real world’ effectiveness trial indicate that the courses have a statistically significant effect on knowledge, attitude, intended behavior and self-efficacy related to genetic testing (p<0.001; N varies between 163 and 596 for each course). Conclusions: The results indicate that this curriculum is an effective tool for educating medical students on the ELSI associated with genetic testing and for promoting positive changes in students' confidence, counseling attitudes and behaviors

    Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes

    Get PDF
    Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons(1,2). Several groups have attributed this apparent plasticity to 'transdifferentiation'(3-5). Others, however, have suggested that cell fusion could explain these results(6-9). Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resulting in the formation of multinucleated cells. No evidence of transdifferentiation without fusion was observed in these tissues. These observations provide the first in vivo evidence for cell fusion of BMDCs with neurons and cardiomyocytes, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62789/1/nature02069.pd

    Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia

    Get PDF
    BACKGROUND: Sera from children with post-varicella infections have autoantibodies that react with centrosomes in brain and tissue culture cells. We investigated the sera of children with infections and post-varicella ataxia and related conditions for reactivity to five recombinant centrosome proteins: γγ-enolase, pericentrin, ninein, PCM-1, and Mob1. METHODS: Sera from 12 patients with acute post-varicella ataxia, 1 with post-Epstein Barr virus (EBV) ataxia, 5 with uncomplicated varicella infections, and other conditions were tested for reactivity to cryopreserved cerebellum tissue and recombinant centrosome proteins. The distribution of pericentrin in the cerebellum was studied by indirect immunofluorescence (IIF) using rabbit antibodies to the recombinant protein. Antibodies to phospholipids (APL) were detected by ELISA. RESULTS: Eleven of 12 children with post-varicella ataxia, 4/5 children with uncomplicated varicella infections, 1/1 with post-EBV ataxia, 2/2 with ADEM, 1/2 with neuroblastoma and ataxia, and 2/2 with cerebellitis had antibodies directed against 1 or more recombinant centrosome antigens. Antibodies to pericentrin were seen in 5/12 children with post-varicella ataxia but not in any of the other sera tested. IIF demonstrated that pericentrin is located in axons and centrosomes of cerebellar cells. APL were detected in 75% of the sera from children with post-varicella ataxia and 50% of children with varicella without ataxia and in none of the controls. CONCLUSION: This is the first study to show the antigen specificity of anti-centrosome antibodies in children with varicella. Our data suggest that children with post-varicella ataxia have unique autoantibody reactivity to pericentrin

    Family History and Breast Cancer Hormone Receptor Status in a Spanish Cohort

    Get PDF
    Breast cancer is a heterogenous disease that impacts racial/ethnic groups differently. Differences in genetic composition, lifestyles, reproductive factors, or environmental exposures may contribute to the differential presentation of breast cancer among Hispanic women.A population-based study was conducted in the city of Santiago de Compostela, Spain. A total of 645 women diagnosed with operable invasive breast cancer between 1992 and 2005 participated in the study. Data on demographics, breast cancer risk factors, and clinico-pathological characteristics of the tumors were collected. Hormone receptor negative tumors were compared with hormone receptor postive tumors on their clinico-pathological characteristics as well as risk factor profiles.Among the 645 breast cancer patients, 78% were estrogen receptor-positive (ER+) or progesterone receptor-positive (PR+), and 22% were ER−&PR−. Women with a family history of breast cancer were more likely to have ER−&PR− tumors than women without a family history (Odds ratio, 1.43; 95% confidence interval, 0.91–2.26). This association was limited to cancers diagnosed before age 50 (Odds ratio, 2.79; 95% confidence interval, 1.34–5.81).An increased proportion of ER−&PR− breast cancer was observed among younger Spanish women with a family history of the disease

    A genetic approach to inactivating chemokine receptors using a modified viral protein

    No full text
    We have developed a genetic system, called degrakine, that specifically and stably inactivates chemokine receptors (CKR) by redirecting the ability of the HIV-1 protein, Vpu, to degrade CD4 in the endoplasmic reticulum (ER) via the host proteasome machinery. To harness Vpu’s proteolytic targeting capability to degrade new receptors, we fused a chemokine with the C terminal region of Vpu. The fusion protein, or degrakine, accumulates in the ER, trapping and functionally inactivating its target CKR. We have demonstrated that degrakines based on SDF-1 (CXCL12), MDC (CCL22) and RANTES (CCL5) specifically inactivate their respective receptor functions. Using a retroviral vector expressing the SDF-1 degrakine, we have established that CXCR4 is required for the homing of hematopoietic stem/progenitor cells (HSPC) to the bone marrow immediately after transplantation. Thus the degrakine provides an effective genetic tool to dissect receptor functions in a number of biological systems in vitro and in vivo
    corecore