6 research outputs found

    . Rearrangements of Water Dimer and Hexamer

    Get PDF
    Abstract. Rearrangement mechanisms of the water dimer and the cage form of the water hexamer are examined theoretically with particular reference to tunneling splittings and spectroscopy. The three lowest barrier rearrangements of the water dimer are characterized by ab initio methods and compared with the results of previous constrained calculations. The acceptor-tunneling pathway does not proceed via a direct rotation around the C2 axis of the acceptor, but rather via relatively asynchronous rotation of the donor about the hydrogen bond and an associated ‘wag’ of the acceptor. Rearrangements between different cage isomers of the water hexamer are studied for two empirical potentials. The experimentally observed triplet splittings may be the result of flip and bifurcation rearrangements of the two single-donor, single-acceptor monomers. Twodimensional quantum calculations of the nuclear dynamics suggest that delocalization over more than one cage isomer may occur, especially in excited states

    Multireference Coupled-Cluster Approach to Spectroscopic Constants: Molecular Geometries and Harmonic Frequencies

    No full text
    corecore