230 research outputs found

    SLC39A14 Deficiency

    Get PDF
    SLC39A14 deficiency is characterized by evidence between ages six months and three years of delay or loss of motor developmental milestones (e.g., delayed walking, gait disturbance). Early in the disease course, children show axial hypotonia followed by dystonia, spasticity, dysarthria, bulbar dysfunction, and signs of parkinsonism including bradykinesia, hypomimia, and tremor. By the end of the first decade they develop severe, generalized, pharmaco-resistant dystonia, limb contractures, and scoliosis, and lose independent ambulation. Cognitive impairment appears to be less prominent than motor disability. Some affected children have succumbed in their first decade due to secondary complications such as respiratory infections.The diagnosis of SLC39A14 deficiency is established in a proband with progressive dystonia-parkinsonism (often combined with other signs such as spasticity and parkinsonian features), characteristic neuroimaging findings, hypermanganesemia, and biallelic pathogenic variants in SLC39A14 on molecular genetic testing.Treatment of manifestations: Symptomatic treatment includes physiotherapy and orthopedic management to prevent contractures and maintain ambulation; use of adaptive aids (walker or wheelchair) for gait abnormalities; and use of assistive communication devices. Support by a speech and language/feeding specialist and nutritionist to assure adequate nutrition and to reduce the risk of aspiration. When an adequate oral diet can no longer be maintained, gastrostomy tube placement should be considered. Antispasticity medications (baclofen and botulinum toxin) and L-dopa have had limited success. While chelation therapy with intravenous administration of disodium calcium edetate early in the disease course shows promise, additional studies are warranted. Prevention of primary manifestations: Unknown, but disodium calcium edetate chelation therapy shows promise; additional studies are warranted. Surveillance: Routine monitoring of: Height and weight using age- and gender-appropriate growth charts; Swallowing and diet to assure adequate nutrition; Ambulation and speech; Whole-blood manganese levels and brain MRI to assess treatment response and disease progression. Agents/circumstances to avoid: Environmental manganese exposure (i.e., contaminated drinking water, occupational manganese exposure in welding/mining industries, contaminated ephedrone preparations). High manganese content of total parenteral nutrition. Foods very high in manganese, including: cloves; saffron; nuts; mussels; dark chocolate; pumpkin, sesame, and sunflower seeds. Evaluation of relatives at risk: Molecular genetic testing for the familial SLC39A14 pathogenic variants of apparently asymptomatic younger sibs of an affected individual allows early identification of sibs who would benefit from prompt initiation of treatment and preventive measures.SLC39A14 deficiency is inherited in an autosomal recessive manner. Heterozygotes (carriers) are asymptomatic and are not at risk of developing the disorder. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Once the SLC39A14 pathogenic variants have been identified in an affected family member, carrier testing of at-risk relatives, prenatal testing for a pregnancy at increased risk, and preimplantation genetic diagnosis are possible

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Mitochondrial DNA analysis from exome sequencing data improves the diagnostic yield in neurological diseases

    Get PDF
    A rapidly expanding catalogue of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty‐four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases

    Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN).

    Get PDF
    - Clinical experts have developed consensus opinions about the management of PKAN that can serve as a guideline for care. - Guidance is provided for diagnosis and management, treatment and surveillance, including for status dystonicus and other emergency care, and education and psychosocial support. - This guideline is a living document that will require ongoing review and revision

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    PLA2G6-associated neurodegeneration (PLAN): Further expansion of the clinical, radiological and mutation spectrum associated with infantile and atypical childhood-onset disease

    Get PDF
    Phospholipase A2 associated neurodegeneration (PLAN) is a major phenotype of autosomal recessive Neurodegeneration with Brain Iron Accumulation (NBIA). We describe the clinical phenotypes, neuroimaging features and PLA2G6 mutations in 5 children, of whom 4 presented with infantile neuroaxonal dystrophy (INAD). One other patient was diagnosed with the onset of PLAN in childhood, and our report highlights the diagnostic challenges associated with this atypical PLAN subtype. In this series, the neuroradiological relevance of classical PLAN features as well as apparent claval hypertrophy' is explored. Novel PLA2G6 mutations were identified in all patients. PLAN should be considered not only in patients presenting with a classic INAD phenotype but also in older patients presenting later in childhood with non-specific progressive neurological features including social communication difficulties, gait disturbance, dyspraxia, neuropsychiatric symptoms and extrapyramidal motor features. © 2014 Elsevier Inc

    Screening Patients with a Family History of Colorectal Cancer

    Get PDF
    OBJECTIVES: To compare screening practices and beliefs in patients with and without a clinically important family history. DESIGN: We mailed a brief questionnaire asking about family history and a second, longer survey asking about knowledge of and beliefs about colorectal cancer to all respondents with a family history and a random sample of respondents without a family history of colorectal cancer. We reviewed electronic medical records for screening examinations and recording of family history. PARTICIPANTS: One thousand eight hundred seventy of 6,807 randomly selected patients ages 35–55 years who had been continuously enrolled in a large multispecialty group practice for at least 5 years. MEASUREMENTS: Recognition of increased risk, screening practices, and beliefs—all according to strength of family history and patient’s age. RESULTS: Nineteen percent of respondents reported a family history of colorectal cancer. In 11%, this history was strong enough to warrant screening before age 50 years. However, only 39% (95% CI 36, 42) of respondents under the age of 50 years said they had been asked about family history and only 45% of those with a strong family history of colorectal cancer had been screened appropriately. Forty-six percent of patients with a strong family history did not know that they should be screened at a younger age than average risk people. Medical records mentioned family history of colorectal cancer in 59% of patients reporting a family history. CONCLUSIONS: More efforts are needed to translate information about family history of colorectal cancer into the care of patients

    Single extreme low dose/low dose rate irradiation causes alteration in lifespan and genome instability in primary human cells

    Get PDF
    To investigate the long-term biological effect of extreme low dose ionising radiation, we irradiated normal human fibroblasts (HFLIII) with carbon ions (290 MeV u−1, 70 keV μm−1) and γ-rays at 1 mGy (total dose) once at a low dose rate (1 mGy 6–8 h−1), and observed the cell growth kinetics up to 5 months by continuous culturing. The growth of carbon-irradiated cells started to slow down considerably sooner than that of non-irradiated cells before reaching senescence. In contrast, cells irradiated with γ-rays under similar conditions did not show significant deviation from the non-irradiated cells. A DNA double strand break (DSB) marker, γ-H2AX foci, and a DSB repair marker, phosphorylated DNA-PKcs foci, increased in number when non-irradiated cells reached several passages before senescence. A single low dose/low dose rate carbon ion exposure further raised the numbers of these markers. Furthermore, the numbers of foci for these two markers were significantly reduced after the cells became fully senescent. Our results indicate that high linear energy transfer (LET) radiation (carbon ions) causes different effects than low LET radiation (γ-rays) even at very low doses and that a single low dose of heavy ion irradiation can affect the stability of the genome many generations after irradiation

    Effectiveness of an online curriculum for medical students on genetics, genetic testing and counseling

    Get PDF
    Background: It is increasingly important that physicians have a thorough understanding of the basic science of human genetics and the ethical, legal and social implications (ELSI) associated with genetic testing and counseling. Methods: The authors developed a series of web-based courses for medical students on these topics. The course modules are interactive, emphasize clinical case studies, and can easily be incorporated into existing medical school curricula. Results: Results of a ‘real world’ effectiveness trial indicate that the courses have a statistically significant effect on knowledge, attitude, intended behavior and self-efficacy related to genetic testing (p<0.001; N varies between 163 and 596 for each course). Conclusions: The results indicate that this curriculum is an effective tool for educating medical students on the ELSI associated with genetic testing and for promoting positive changes in students' confidence, counseling attitudes and behaviors
    corecore