7 research outputs found

    Extreme chemical conditions of crystallisation of Umbrian Melilitolites and wealth of rare, late stage/hydrothermal minerals

    No full text
    Abstract Melilitolites of the Umbria Latium Ultra-alkaline District display a complete crystallisation sequence of peculiar, late-stage mineral phases and hydrothermal/cement minerals, analogous to fractionated mineral associations from the Kola Peninsula. This paper summarises 20 years of research which has resulted in the identification of a large number of mineral species, some very rare or completely new and some not yet classified. The progressive increasing alkalinity of the residual liquid allowed the formation of Zr-Ti phases and further delhayelitemacdonaldite mineral crystallisation in the groundmass. The presence of leucite and kalsilite in the igneous assemblage is unusual and gives a kamafugitic nature to the rocks. Passage to non-igneous temperatures (T<600 °C) is marked by the metastable reaction and formation of a rare and complex zeolite association (T<300 °C). Circulation of low-temperature (T<100 °C) K-Ca-Ba-CO2-SO2-fluids led to the precipitation of sulphates and hydrated and/or hydroxylated silicate-sulphate-carbonates. As a whole, this mineral assemblage can be considered typical of ultra-alkaline carbonatitic rocks

    Differential effects of two chronic diazepam treatment regimes on withdrawal anxiety and aMPA receptor characteristics

    No full text
    Withdrawal from chronic benzodiazepines is associated with increased anxiety and seizure susceptibility. Neuroadaptive changes in neural activity occur in limbo-cortical structures although changes at the level of the GABAA receptor do not provide an adequate explanation for these functional changes. We have employed two diazepam treatment regimes known to produce differing effects on withdrawal aversion in the rat and examined whether withdrawal-induced anxiety was accompanied by changes in AMPA receptor characteristics. Rats were given 28 days treatment with diazepam by the intraperitoneal (i.p.) route (5 mg/kg) and the subcutaneous (s.c.) route (15 mg/kg). Withdrawal anxiety in the elevated plus maze was evident in the group withdrawn from chronic s.c. diazepam (relatively more stable plasma levels) but not from the chronic i.p. group (fluctuating daily plasma levels). In the brains of these rats, withdrawal anxiety was accompanied by increased [3H]Ro48 8587 binding in the hippocampus and thalamus, and decreased GluR1 and GluR2 subunit mRNA expression in the amygdala (GluR1 and GluR2) and cortex (GluR1). The pattern of changes was different in the chronic i.p. group where in contrast to the chronic s.c. group, there was reduced [3H]Ro48 8587 binding in the hippocampus and no alterations in GluR1 and GluR2 subunit expression in the amygdala. While both groups showed reduced GluR1 mRNA subunit expression in the cortex overall, only the agranular insular cortex exhibited marked reductions following chronic i.p. diazepam. Striatal GluR2 mRNA expression was increased in the i.p. group but not the s.c. group. Taken together, these data are consistent with differential neuroadaptive processes in AMPA receptor plasticity being important in withdrawal from chronic benzodiazepines. Moreover, these processes may differ both at a regional and receptor function level according to the behavioral manifestations of withdrawal

    Calcium/Calmodulin-Dependent Protein Kinase II Mediates Hippocampal Glutamatergic Plasticity During Benzodiazepine Withdrawal

    No full text
    Benzodiazepine withdrawal anxiety is associated with potentiation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) currents in hippocampal CA1 pyramidal neurons attributable to increased synaptic incorporation of GluA1-containing AMPARs. The contribution of calcium/calmodulin-dependent protein kinase II (CaMKII) to enhanced glutamatergic synaptic strength during withdrawal from 1-week oral flurazepam (FZP) administration was further examined in hippocampal slices. As earlier reported, AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, along with increased single-channel conductance in neurons from 2-day rats, estimated by non-stationary noise analysis. Input–output curve slope was increased without a change in paired-pulse facilitation, suggesting increased AMPAR postsynaptic efficacy rather than altered glutamate release. The increased mEPSC amplitude and AMPAR conductance were related to CaMKII activity, as intracellular inclusion of CaMKIINtide or autocamtide-2-related inhibitory peptide, but not scrambled peptide, prevented both AMPAR amplitude and conductance changes. mEPSC inhibition by 1-naphthyl acetyl spermine and the negative shift in rectification index at both withdrawal time points were consistent with functional incorporation of GluA2-lacking AMPARs. GluA1 but not GluA2 or GluA3 levels were increased in immunoblots of postsynaptic density (PSD)-enriched subcellular fractions of CA1 minislices from 1-day FZP-withdrawn rats, when mEPSC amplitude, but not conductance, was increased. Both GluA1 expression levels and CaMKIIα-mediated GluA1 Ser831 phosphorylation were increased in PSD-subfractions from 2-day FZP-withdrawn rats. As phospho-Thr286CaMKIIα was unchanged, CaMKIIα may be activated through an alternative signaling pathway. Synaptic insertion and subsequent CaMKIIα-mediated Ser831 phosphorylation of GluA1 homomers contribute to benzodiazepine withdrawal-induced AMPAR potentiation and may represent an important hippocampal pathway mediating both drug-induced and activity-dependent plasticity

    Glutamatergic Mechanisms of Drug Relapse

    No full text

    Platinum-Group Metals, Alloys and Compounds in Catalysis

    No full text
    corecore