3,815 research outputs found

    The graphene sheet versus the 2DEG: a relativistic Fano spin-filter via STM and AFM tips

    Full text link
    We explore theoretically the density of states (LDOS) probed by an STM tip of 2D systems hosting an adatom and a subsurface impurity,both capacitively coupled to AFM tips and traversed by antiparallel magnetic fields. Two kinds of setups are analyzed, a monolayer of graphene and a two-dimensional electron gas (2DEG). The AFM tips set the impurity levels at the Fermi energy, where two contrasting behaviors emerge: the Fano factor for the graphene diverges, while in the 2DEG it approaches zero. As result, the spin-degeneracy of the LDOS is lifted exclusively in the graphene system, in particular for the asymmetric regime of Fano interference. The aftermath of this limit is a counterintuitive phenomenon, which consists of a dominant Fano factor due to the subsurface impurity even with a stronger STM-adatom coupling. Thus we find a full polarized conductance, achievable just by displacing vertically the position of the STM tip. To the best knowledge, our work is the first to propose the Fano effect as the mechanism to filter spins in graphene. This feature arises from the massless Dirac electrons within the band structure and allows us to employ the graphene host as a relativistic Fano spin-filter

    Spin-dependent beating patterns in thermoelectric properties: Filtering the carriers of the heat flux in a Kondo adatom system

    Full text link
    We theoretically investigate the thermoelectric properties of a spin-polarized two-dimensional electron gas hosting a Kondo adatom hybridized with an STM tip. Such a setup is treated within the single-impurity Anderson model in combination with the atomic approach for the Green's functions. Due to the spin dependence of the Fermi wavenumbers the electrical and thermal conductances, together with thermopower and Lorenz number reveal beating patterns as function of the STM tip position in the Kondo regime. In particular, by tuning the lateral displacement of the tip with respect to the adatom vicinity, the temperature and the position of the adatom level, one can change the sign of the Seebeck coefficient through charge and spin. This opens a possibility of the microscopic control of the heat flux analogously to that established for the electrical current

    Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment

    Get PDF
    Acknowledgements This study was possible by partial financial support from the following Brazilian government agencies: Fundação Araucária, EPSRC-EP/I032606/1 and CNPq, CAPES and Science Without Borders Program Process nos. 17656125, 99999.010583/2013-00 and 245377/2012-3.Peer reviewedPreprin

    Magnetization plateau in a two-dimensional multiple-spin exchange model

    Full text link
    We study a multiple-spin exchange model on a triangular lattice, which is a possible model for low-density solid 3He films. Due to strong competitions between ferromagnetic three-spin exchange and antiferromagnetic four-spin one, the ground states are highly degenerate in the classical limit. At least 2^{L/2}-fold degeneracy exists on the L*L triangular lattice except for the SO(3) symmetry. In the magnetization process, we found a plateau at m/m_{sat}=1/2, in which the ground state is "uuud state" (a collinear state with four sublattices). The 1/2-plateau appears due to the strong four-spin exchange interaction. This plateau survives against both quantum and thermal fluctuations. Under a magnetic field which realizes the "uuud" ordered state, a phase transition occurs at a finite temperature. We predict that low-density solid 3He thin films may show the 1/2-plateau in the magnetization process. Experimental observation of the plateau will verify strength of the four-spin exchange. It is also discussed that this magnetization plateau can be understood as an insulating-conducting transition in a particle picture.Comment: 10 pages, RevTeX, 12 figures, added a reference and corrected typos, to be published in Phys.Rev.B (01 APR 99

    Influence of Cognitive Orientation and Attentional Focus on Pain Perception

    Get PDF
    Background. Recently, a growing interest has emerged in the role of attention and hypervigilance in the experience of pain. Shifting attention away from pain seems likely to reduce the perception of pain itself. Objectives. The present study has been designed to test the following overall hypotheses: (1) disposition to catastrophize, self-efficacy perceived in pain resistance (task self-efficacy), previous experiences concerning the tolerance of physical pain, and degree of impulsiveness are significant predictors of the decision to abandon a painful test such as the cold pressor test (CPT); (2) the manipulation of the attentive focus (internal or external) can influence the level of perceived pain. Methods. Effects of the manipulation of attentional focus (internal and external) on pain perception and response of trial abandonment were evaluated in a sample of university students (n = 246) subjected to the cold pressor test. Results. A significant effect (p < 0.05) was found through a test–retest comparison on the final level of perceived pain among subjects who had received instruction to externalize the focus of their attention (mixed factorial analysis of variance), but no significance was observed with respect to the decision to abandon the experiment. A general explanatory model of the abandonment behavior demonstrating overall good fit measurements was tested too. Conclusion. The abandonment of tests has been shown to be predicted mainly by catastrophic attitude. Attentive impulsiveness showed a further positive effect on catastrophic attitude. Perceived self-efficacy in the tolerance of pain limited learned helplessness, which in turn positively influenced catastrophizing

    Processamento de patê de carne de rã.

    Get PDF
    bitstream/CTAA-2009-09/9987/1/ct107-2006.pd
    corecore