1,872 research outputs found

    Irrigação na Produção Integrada de uvas finas de mesa PI-Uva.

    Get PDF
    bitstream/item/51531/1/SDC241.pd

    Estimation of the Pitzer Parameters for 1–1, 2–1, 3–1, 4–1, and 2–2 Single Electrolytes at 25 °C

    Get PDF
    The Pitzer model is one of the most important thermodynamic models to predict the behavior of aqueous electrolyte solutions, especially at high ionic strengths. However, most of the parameters in the Pitzer equations have to be obtained experimentally and this represents an important drawback to this model. Therefore, in order to make the Pitzer equations less dependent on experimental data and more dependent on the properties of the solution, new equations that correlate the Pitzer equations with the properties of the solution have been successfully developed for 1-1, 2-1, 3-1, 4-1 and 2-2 electrolytes. In particular, these equations were developed for two cases: (i) considers the original Pitzer equations and (ii) considers some simplifications to the Pitzer equation (assuming CMX , BMX (2) and 2 = 0). In particular, for case (ii), the second virial coefficients BMX (0) and BMX (1) of the Pitzer equations were re-estimated using published experimental data of the osmotic coefficient obtained from the literature. As a conclusion, both the simplified and the original Pitzer equations presented a very good match with this published experimental data for the osmotic coefficients. Additionally, the second virial coefficients BMX (0) and BMX (1) for both cases were successfully correlated with the ionic radius and the ionic charge, and this is confirmed by the very high coefficients of determination achieved (R2>0.96). However, these new equations are valid only to cases in which no significant ion association occurs, which is also the basic premise of the original Pitzer model

    Discriminating among the theoretical origins of new heavy Majorana neutrinos at the CERN LHC

    Get PDF
    A study on the possibility of distinguishing new heavy Majorana neutrino models at LHC energies is presented. The experimental confirmation of standard neutrinos with non-zero mass and the theoretical possibility of lepton number violation find a natural explanation when new heavy Majorana neutrinos exist. These new neutrinos appear in models with new right-handed singlets, in new doublets of some grand unified theories and left-right symmetrical models. It is expected that signals of new particles can be found at the CERN high-energy hadron collider (LHC). We present signatures and distributions that can indicate the theoretical origin of these new particles. The single and pair production of heavy Majorana neutrinos are calculated and the model dependence is discussed. Same-sign dileptons in the final state provide a clear signal for the Majorana nature of heavy neutrinos, since there is lepton number violation. Mass bounds on heavy Majorana neutrinos allowing model discrimination are estimated for three different LHC luminosities.Comment: 7 pages, 5 figure
    • …
    corecore