27 research outputs found

    Controlled human malaria infection (CHMI) outcomes in Kenyan adults is associated with prior history of malaria exposure and anti-schizont antibody response

    Get PDF
    BACKGROUND: Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired immunity in Kenyan adults with varying malaria exposure. METHODS: We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and residence as proxy markers of naturally acquired immunity. RESULTS: Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability. CONCLUSIONS: The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria. Trial registration Clinicaltrials.gov number NCT02739763. Registered 15 April 2016

    Delineation of Stage Specific Expression of Plasmodium falciparum EBA-175 by Biologically Functional Region II Monoclonal Antibodies

    Get PDF
    EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains..The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes

    An EGF-like Protein Forms a Complex with PfRh5 and Is Required for Invasion of Human Erythrocytes by Plasmodium falciparum

    Get PDF
    Invasion of erythrocytes by Plasmodium falciparum involves a complex cascade of protein-protein interactions between parasite ligands and host receptors. The reticulocyte binding-like homologue (PfRh) protein family is involved in binding to and initiating entry of the invasive merozoite into erythrocytes. An important member of this family is PfRh5. Using ion-exchange chromatography, immunoprecipitation and mass spectroscopy, we have identified a novel cysteine-rich protein we have called P. falciparum Rh5 interacting protein (PfRipr) (PFC1045c), which forms a complex with PfRh5 in merozoites. Mature PfRipr has a molecular weight of 123 kDa with 10 epidermal growth factor-like domains and 87 cysteine residues distributed along the protein. In mature schizont stages this protein is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is shed into the culture supernatant. Antibodies to PfRipr1 potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process

    The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential?

    Get PDF

    Controlled human malaria infection (CHMI) outcomes in Kenyan adults is associated with prior history of malaria exposure and anti-schizont antibody response

    No full text
    Background Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired immunity in Kenyan adults with varying malaria exposure. Methods We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and residence as proxy markers of naturally acquired immunity. Results Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability. Conclusions The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria. Trial registration Clinicaltrials.gov number NCT02739763. Registered 15 April 201

    Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model

    No full text
    In the first Phase I clinical trials of endostatin as an antiangiogenic therapy for cancer, the protein was administered as an i.v. bolus for similar to 20-30 min each day. This protocol was based on experimental studies in which animals were treated by s.c. bolus once a day. However, it was not clear in the previous studies whether this schedule could be maximized further. Therefore, we developed experimental models involving continuous administration of endostatin to determine the potency and efficacy of this approach. Endostatin was administered to tumor-bearing mice either s.c. or i.p. in single bolus doses. The efficacy of these regimens was compared with endostatin administered continuously via an i.p. implanted mini-osmotic pump. Our results show that endostatin remains stable and active in mini-osmotic pumps for at least 7 days. We show that endostatin injected i.p. is rapidly cleared within 2 h, whereas endostatin administered continuously via mini-osmotic pump maintains systemic concentrations of 200-300 ng/ml for the duration of administration. Furthermore, continuous i.p. administration of endostatin results in more effective tumor suppression at significantly reduced doses (5-fold), compared with bolus administration. Additional experiments using a human pancreatic cancer model in severe combined immunodeficient mice showed that there was a significant decrease in the microvessel density between the treatment groups and the control group. These data show that continuous administration of human endostatin results in sustained systemic concentrations of the protein leading to: (a) increased efficacy manifested as increased tumor regression; and (b) an 8-10-fold decrease in the dose required to achieve the same antitumor effect as the single daily bolus administration of endostatin. On the basis of this approach, an additional clinical trial has been designed and initiated and is under way in two countries
    corecore