15 research outputs found

    Extracellular alkaline phosphatase activity in mineralizing matrices of cartilage and bone: ultrastructural localization using a cerium-based method.

    No full text
    The ultrastructural localization of alkaline phosphatase (A1P) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. A1P activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance

    OPG and RANKL mRNA and protein expressions in the primary and secondary metaphyseal trabecular bone of PTH-treated rats are independent of that of SOST

    No full text
    Sclerostin, encoded by the SOST gene, is a recently identified protein which seems to affect bone remodeling by inhibiting bone formation via Wnt pathways. A previous study on OPG and RANKL, two cytokines involved in the control of osteoclastogenesis, showed that the anabolic effect produced by intermittent treatment with parathyroid hormone was characterized by an increase in OPG/RANKL mRNA ratio in the primary spongiosa of metaphyseal bone of rat femur, and by its falling in the secondary spongiosa, in comparison to controls (Silvestrini et al. (2007a)). Considering that Wnt pathway components seem to regulate osteoclast formation and bone resorption by repression of RANKL transcription and by positive regulation of OPG gene in osteoblastic cells, we have evaluated, in the same rats, whether and how SOST mRNA and protein in the primary and secondary metaphyseal bone are affected by PTH. SOST mRNA and protein significantly fell in both primary and secondary spongiosa where only a few osteocytes were positive to sclerostin. These data show that in the two metaphyseal areas no relationship does exist between the trends of OPG and RANKL mRNA and that of SOST, suggesting that there are no direct links between the effects induced by PTH on these molecules, at least in terms of gene expression

    THE ANATOMY OF BONE SIALOPROTEIN IMMUNOREACTIVE SITES IN BONE AS REVEALED BY COMBINED ULTRASTRUCTURAL HISTOCHEMISTRY AND IMMUNOHISTOCHEMISTRY

    No full text
    Bone sialoprotein was immunolocalized at the EM level in thin Lowicryl K4M sections of rat bone. Because of the unconventional EM morphology of the bone matrix seen in thin demineralized acrylate sections, the pattern of immunolabeling was compared with detailed structural images of demineralized bone obtained using an en bloc treatment of tissue samples with the cationic electron 'dye,' Malachite Green (MG), which provides stabilization and retention of anionic material throughout specimen processing. A system of structures corresponding to the sites of bone sialoprotein (BSP) immunoreactivity, as seen in Lowicryl K4M thin sections, could be readily identified in the MG-treated, epoxy thin sections. This system includes the cement lines, and aggregates of similar material within mineralized bone and mineralizing osteoid. The virtual identity of BSP distribution with the arrangement of the MG-visualized material indicates that a BSP-enriched, noncollagenous phase can be demonstrated using different, unrelated tissue preparation and imaging protocols for EM. Besides improving our understanding of the distribution of bone sialoprotein in bone, these data assign a previously unrecognized structural dimension to noncollagenous material in the bone matrix

    Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone

    No full text
    Sclerostin, the secreted protein product of the SOST gene, which is mainly expressed by osteocytes, has recently been proposed as a negative regulator of bone osteoblastogenesis. Chronic elevation of PTH reduces SOST expression by osteocytes, while controversial results have been obtained by intermittent PTH administration. We have investigated the effects of intermittently administered PTH on SOST expression and sclerostin localization, comparing them with those of controls, as they appeared in three different bone segments of rat tibia: secondary trabecular metaphyseal and epiphyseal bone, and cortical diaphyseal bone. The histomorphometric results demonstrate that PTH enhances bone turnover through anabolic effects, as shown by the association of increased bone resorption variables with a significant rise in BV/TV, Tb.Th and Tb.N and a fall in Tb.Sp. PTH induces a SOST mRNA and protein fall in secondary metaphyseal trabeculae, diaphyseal bone and in epiphyseal trabeculae. Numbers of sclerostin immunopositive osteocytes/mm2 show no change, compared with controls; there are fewer sclerostin-positive osteocytes in secondary metaphyseal trabeculae than in the other two bone areas, both in the control and PTH groups. The low numbers of sclerostin-positive osteocytes in the metaphyseal trabecular bone seem to be directly related to the fact that this area displays a high remodeling rate. The anabolic effects of PTH are in line with the fall of SOST mRNA and protein in all the three bone segments examined; the rise of bone turnover supports a negative role of SOST in bone formation. © 2007 Springer Science+Business Media B.V

    Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat

    No full text
    Osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kB ligand (RANKL) are key regulators of osteoclastogenesis. The present study had the main aim of showing the localization of OPG and RANKL mRNA and protein in serial sections of the rat femurs and tibiae by immunohistochemistry (IHC) and in situ hybridization (ISH). The main results were: (1) OPG and RANKL mRNA and protein were co-localized in the same cell types, (2) maturative/hypertrophic chondrocytes, osteoblasts, lining cells, periosteal cells and early osteocytes were stained by both IHC and ISH, (3) OPG and RANKL proteins were mainly located in Golgi areas, and the ISH reaction was especially visible in active osteoblasts, (4) immunolabeling was often concentrated into cytoplasmic vacuoles of otherwise negative proliferative chondrocytes; IHC and ISH labeling increased from proliferative to maturative/hypertrophic chondrocytes, (5) the newly laid down bone matrix, cartilage-bone interfaces, cement lines, and trabecular borders showed light OPG and RANKL immunolabeling, (6) about 70% of secondary metaphyseal bone osteocytes showed OPG and RANKL protein expression; most of them were ISH-negative, (7) osteoclasts were mostly unstained by IHC and variably labeled by ISH. The co-expression of OPG and RANKL in the same bone cell types confirms their strictly coupled action in the regulation of bone metabolism

    Effects of the administration of corticosterone, parathyroid hormone, or both, and of their withdrawal, on rat bone and cartilage histomorphometric parameters, and on osteoprotegerin and RANKL mRNA expression and proteins.

    No full text
    We have studied the effects of the treatment with corticosterone (CORT), parathyroid hormone (PTH), or both (CORT + PTH), and of their withdrawal (CORT-rec and CORT + PTH-rec), on the osteoprotegerin (OPG) and receptor activator of nuclear factor-kB ligand (RANKL) localization and expression and on histomorphometric parameters in primary and secondary spongiosa of rat femur and tibia metaphyses. In the secondary spongiosa of the CORT group, the bone remodeling and the OPG/RANKL mRNA ratio decreased. In the PTH group, the bone turnover and the structural and connectivity indices increased, and the OPG/RANKL mRNA ratio fell; this ratio rose, however, in the primary spongiosa. In the CORT + PTH group, remodeling values intermediate between those of the CORT and PTH groups, were detected in the secondary spongiosa, where OPG and RANKL mRNA rose. Return towards control values was found in the recovery groups. The Cartilage Growth Plate Width was reduced in the CORT and CORT + PTH groups and returned to normal values in the recovery groups, while it was not affected by PTH. Independently of treatments, both OPG and RANKL mRNA and proteins were co-localized in the same cartilage and bone cells and in several bone marrow cells. In conclusion, the catabolic effects induced by CORT treatment occur together with an OPG fall and a RANKL rise. In the PTH group in which the bone turnover increase, the OPG and RANKL mRNA expressions differ in the primary and secondary spongiosa, confirming that the bone tissue in these sites can have different metabolic trends
    corecore