55,276 research outputs found

    Meson production in two-photon interactions at energies available at CERN Large Hadron Collider

    Full text link
    The meson production cross sections are estimated considering photon-photon interactions in hadron - hadron collisions at CERN LHC energies. We consider a large number of mesons with photon-photon partial decay width well constrained by the experiment and some mesons which are currently considered as hadronic molecule and glueball candidates. Our results demonstrate that the experimental analysis of these states is feasible at CERN - LHC.Comment: 5 pages, 1 figure, 4 tables. Version published in Physical Review

    c-axis transport and phenomenology of the pseudo-gap state in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We measure and analyze the resistivity of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals for different doping δ\delta. We obtain the fraction of carrier η(T,δ)=ng/nTOT\eta(T,\delta) = n_g/n_{TOT} that do not participate to the c-axis conductivity. All the curves η(T,δ)\eta(T,\delta) collapse onto a universal curve when plotted against a reduced temperature x=[TΘ(δ)]/Δ(δ)x=[T-\Theta(\delta)]/\Delta^{*}(\delta). We find that at the superconducting transition ngn_g is doping independent. We also show that a magnetic field up to 14 T does not affect the degree of localization in the (a,b) planes but widens the temperature range of the x-scaling by suppressing the superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator

    Full text link
    The transverse self-modulation of ultra-relativistic, long lepton bunches in high-density plasmas is explored through full-scale particle-in-cell simulations. We demonstrate that long SLAC-type electron and positron bunches can become strongly self-modulated over centimeter distances, leading to wake excitation in the blowout regime with accelerating fields in excess of 20 GV/m. We show that particles energy variations exceeding 10 GeV can occur in meter-long plasmas. We find that the self-modulation of positively and negatively charged bunches differ when the blowout is reached. Seeding the self-modulation instability suppresses the competing hosing instability. This work reveals that a proof-of-principle experiment to test the physics of bunch self-modulation can be performed with available lepton bunches and with existing experimental apparatus and diagnostics.Comment: 8 pages, 8 figures, accepted for publication in Physics of Plasma

    Configurações de sistemas e níveis de irrigação na produção e qualidade de sementes de tomate cultivado em sistêmico orgânico.

    Get PDF
    Objetivous-se neste estudo avaliar o efeito de diferentes configurações de sistemas de irrigação e estratégias de manejo de água na produção e qualidade fisiológica de sementes de tomate cultivado em sistema orgânico.CD-ROM. Suplemento. Trabalho apresentado no 51. Congresso Brasileiro de Olericultura, Viçosa, MG

    Stabilizer Quantum Error Correction with Qubus Computation

    Get PDF
    In this paper we investigate stabilizer quantum error correction codes using controlled phase rotations of strong coherent probe states. We explicitly describe two methods to measure the Pauli operators which generate the stabilizer group of a quantum code. First, we show how to measure a Pauli operator acting on physical qubits using a single coherent state with large average photon number, displacement operations, and photon detection. Second, we show how to measure the stabilizer operators fault-tolerantly by the deterministic preparation of coherent cat states along with one-bit teleportations between a qubit-like encoding of coherent states and physical qubits.Comment: 4 pages, 5 figure
    corecore