25,736 research outputs found

    A photometric and spectroscopic survey of solar twin stars within 50 parsecs of the Sun: I. Atmospheric parameters and color similarity to the Sun

    Full text link
    Solar twins and analogs are fundamental in the characterization of the Sun's place in the context of stellar measurements, as they are in understanding how typical the solar properties are in its neighborhood. They are also important for representing sunlight observable in the night sky for diverse photometric and spectroscopic tasks, besides being natural candidates for harboring planetary systems similar to ours and possibly even life-bearing environments. We report a photometric and spectroscopic survey of solar twin stars within 50 pc of the Sun. Hipparcos absolute magnitudes and (B-V)_Tycho colors were used to define a 2 sigma box around the solar values, where 133 stars were considered. Additional stars resembling the solar UBV colors in a broad sense, plus stars present in the lists of Hardorp, were also selected. All objects were ranked by a color-similarity index with respect to the Sun, defined by uvby and BV photometry. Moderately high-resolution, high-S/N spectra were used for a subsample of equatorial-southern stars to derive Teff, log g, and [Fe/H] with average internal errors better than 50 K, 0.20 dex, and 0.08 dex, respectively. Ages and masses were estimated from theoretical HR diagrams. The color-similarity index proved very successful. We identify and rank new excellent solar analogs, which are fit to represent the Sun in the night sky. Some of them are faint enough to be of interest for moderately large telescopes. We also identify two stars with near-UV spectra indistinguishable from the Sun's. We present five new "probable" solar twin stars, besides five new "possible" twins. Masses and ages for the best solar twin candidates lie very close to the solar values, but chromospheric activity levels range somewhat. We propose that the solar twins be emphasized in the ongoing searches for extra-solar planets and SETI searches.Comment: 25 pages, 15 figures, 14 table

    Symbolic Sequences and Tsallis Entropy

    Full text link
    We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated ll times, with the probability distribution p(l)1/lμp(l)\propto 1/ l^{\mu}. For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of qq, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter μ\mu.Comment: Published in the Brazilian Journal of Physic

    Alternativas de controle para redução de grãos ardidos na cultura do milho.

    Get PDF
    As podridões de espiga e grãos ardidos estão entre as principais doenças da cultura do milho. O presente trabalho teve como objetivo avaliar o efeito da resistência genética e densidade de plantio na incidência de grãos ardidos na cultura do milho. O experimento de resistência genética foi conduzido nas cidades de Indianópolis -MG e Guarda-Mor –MG. O experimento de densidade de plantio foi conduzido na cidade de Sete Lagoas –MG. Realizaram-se identificação e quantificação dos grãos ardidos das amostras de grãos colhidos nos experimentos. Foi realizado o Teste de Patologia de Sementes, através do método do papel de filtro umedecido, para identificação dos fungos associados à ocorrência de grãos ardidos. Foram identificadas cultivares com alto nível de resistência a grãos ardidos. O aumento da densidade de plantio resultou em aumento na incidência de grãos ardidos. De acordo com os resultados obtidos, conclui-se que a resistência genética é uma alternativa viável de controle de fungos que atacam as espigas, e o aumento na densidade de plantio influencia a incidência de grãos ardidos na cultura do milho

    Zero-field Kondo splitting and quantum-critical transition in double quantum dots

    Full text link
    Double quantum dots offer unique possibilities for the study of many-body correlations. A system containing one Kondo dot and one effectively noninteracting dot maps onto a single-impurity Anderson model with a structured (nonconstant) density of states. Numerical renormalization-group calculations show that while band filtering through the resonant dot splits the Kondo resonance, the singlet ground state is robust. The system can also be continuously tuned to create a pseudogapped density of states and access a quantum critical point separating Kondo and non-Kondo phases.Comment: 4 pages, 4 figures; Accepted for publication in Physical Review Letter
    corecore