39,085 research outputs found

    Gamma Ray Bursts as Cosmological Probes

    Get PDF
    We discuss the prospects of using Gamma Ray Bursts (GRBs) as high-redshift distance estimators, and consider their use in the study of two dark energy models, the Generalized Chaplygin Gas (GCG), a model for the unification of dark energy and dark matter, and the XCDM model, a model where a generic dark energy fluid like component is described by the equation of state, p=ωρp= \omega \rho. Given that the GRBs range of redshifts is rather high, it turns out that they are not very sensitive to the dark energy component, being however, fairly good estimators of the amount of dark matter in the Universe.Comment: 4 pages, 1 figure, talk presented by P.T.S. at the XV Encontro Nacional De Astronomia e Astrofisica, Lisbon, Portugal, 28-30 July 200

    Evaluation of a Pound Net Leader Designed to Reduce Sea Turtle Bycatch

    Get PDF
    Offshore pound net leaders in the southern portion of Chesapeake Bay in Virginia waters were documented to incidentally take protected loggerhead, Caretta caretta, and Kemp’s ridley, Lepidochelys kempii, sea turtles. Because of these losses, NOAA’s National Marine Fisheries Service (NMFS) in 2004 closed the area to offshore pound net leaders annually from 6 May to 15 July and initiated a study of an experimental leader design that replaced the top two-thirds of the traditional mesh panel leader with vertical ropes (0.95 cm) spaced 61 cm apart. This experimental leader was tested on four pound net sites on the eastern shore of Chesapeake Bay in 2004 and 2005. During the 2 trial periods, 21 loggerhead and Kemp’s ridley sea turtles were found interacting with the control leader and 1 leatherback turtle, Dermochelys coriacea, was found interacting with the experimental leader. Results of a negative binomial regression analysis comparing the two leader designs found the experimental leader significantly reduced sea turtle interactions (p=0.03). Finfish were sampled from the pound nets in the study to assess finfish catch performance differences between the two leader designs. Although the conclusions from this element of the experiment are not robust, paired t-test and Wilcoxon signed rank test results determined no significant harvest weight difference between the two leaders. Kolmogorov-Smirnov tests did not reveal any substantive size selectivity differences between the two leaders

    Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping

    Get PDF
    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales ~104ωpe1 \tilde \, 10^4 \, {\omega}_{pe}^{-1}. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well-confined to the downstream region of the electrostatic shock. The shock formation process is not modified and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock

    DC magnetic field generation in unmagnetized shear flows

    Get PDF
    The generation of DC magnetic fields in unmagnetized plasmas with velocity shear is predicted for non relativistic and relativistic scenarios either due to thermal effects or due to the onset of the Kelvin-Helmholtz instability (KHI). A kinetic model describes the growth and the saturation of the DC field. The predictions of the theory are confirmed by multidimensional particle-in-cell simulations, demonstrating the formation of long lived magnetic fields (t100sωpi1t \sim 100s \omega_{pi}^{-1}) along the full longitudinal extent of the shear layer, with transverse width on the electron length scale (γ0c/ωpe\sqrt{\gamma_0}c/\omega_{pe}), reaching magnitudes eBDC/mecωpeβ0γ0eB_{\mathrm{DC}}/m_ec\omega_{pe}\sim \beta_0\sqrt{\gamma_0}

    Large angle magnetization dynamics measured by time-resolved ferromagnetic resonance

    Full text link
    A time-resolved ferromagnetic resonance technique was used to investigate the magnetization dynamics of a 10 nm thin Permalloy film. The experiment consisted of a sequence of magnetic field pulses at a repetition rate equal to the magnetic systems resonance frequency. We compared data obtained by this technique with conventional pulsed inductive microwave magnetometry. The results for damping and frequency response obtained by these two different methods coincide in the limit of a small angle excitation. However, when applying large amplitude field pulses, the magnetization had a non-linear response. We speculate that one possible cause of the nonlinearity is related to self-amplification of incoherence, known as the Suhl instabilities.Comment: 23 pages, 8 figures, submitted to PR
    corecore