72,938 research outputs found

    GRASP: A New Search Algorithm for Satisfiability

    No full text
    This paper introduces GRASP (Generic search Algorithm J3r the Satisfiabilily Problem), an integrated algorithmic J3amework 30r SAT that unifies several previously proposed searchpruning techniques and jcilitates identification of additional ones. GRASP is premised on the inevitability of conflicts during search and its most distinguishingjature is the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search space. In addition, by 'ecording" the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts later on in the search. Einally, straighrward bookkeeping of the causali y chains leading up to conflicts a/lows GRASP to identij) assignments that are necessary jr a solution to be found. Experimental results obtained jom a large number of benchmarks, including many J3om the field of test pattern generation, indicate that application of the proposed conflict analysis techniques to SAT algorithms can be extremely ejctive jr a large number of representative classes of SAT instances

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks

    Simplicial minisuperspace models in the presence of a massive scalar field with arbitrary scalar coupling

    Get PDF
    We extend previous simplicial minisuperspace models to account for arbitrary scalar coupling \eta R\phi^2.Comment: 24 pages and 9 figures. Accepted for publication by Classical and Quantum Gravit

    Dynamic radiation force of acoustic waves on solid elastic spheres

    Get PDF
    The present study concerns the dynamic radiation force on solid elastic spheres exerted by a plane wave with two frequencies (bichromatic wave) considering the nonlinearity of the fluid. Our approach is based on solving the wave scattering for the sphere in the quasilinear approximation within the preshock wave range. The dynamic radiation force is then obtained by integrating the component of the momentum flux tensor at the difference of the primary frequencies over the boundary of the sphere. Results reveal that effects of the nonlinearity of the fluid plays a major role in dynamic radiation force leading it to a parametric amplification regime. The developed theory is used to calculate the dynamic radiation force on three different solid spheres (aluminium, silver, and tungsten). Resonances are observed in the spectrum of the force on the spheres. They have larger amplitude and better shape than resonances present in static radiation force.Comment: 9 pages, 4 figures, to appear in Physical Review

    Pion mass dependence of the nucleon mass in the chiral quark soliton model

    Get PDF
    The dependence of the nucleon mass on the mass of the pion is studied in the framework of the chiral quark-soliton model. A remarkable agreement is observed with lattice data from recent full dynamical simulations. The possibility and limitations to use the model results as a guideline for the chiral extrapolation of lattice data are discussed.Comment: 14 pages, 12 figures, 4 tables. v2: References added, new figure included, discussion improved, typos fixed, matches published versio
    • 

    corecore