314 research outputs found

    Induction of systemic resistance in tomato by the autochthonous phylloplane resident Bacillus cereus.

    Get PDF
    The objective of this work was to verify if the induced resistance mechanism is responsible for the capacity of a phylloplane resident bacteria (Bacillus cereus), isolated from healthy tomato plants, to control several diseases of this crop. A strain of Pseudomonas syringae pv. tomato was used as the challenging pathogen. The absence of direct antibiosis of the antagonist against the pathogen, the significant increase in peroxidases activity in tomato plants exposed to the antagonist and then inoculated with the challenging pathogen, as well as the character of the protection, are evidences wich suggest that biocontrol efficiency presented by the antagonist in previous works might be due to induced systemic resistance (ISR)

    Growth inhibitory effects of 3′-nitro-3-phenylamino nor-beta-lapachone against HL-60: A redox-dependent mechanism

    Get PDF
    AbstractIn this study, the cytotoxicity, genotoxicity and early ROS generation of 2,2-dimethyl-(3H)-3-(N-3′-nitrophenylamino)naphtho[1,2-b]furan-4,5-dione (QPhNO2) were investigated and compared with those of its precursor, nor-beta-lapachone (nor-beta), with the main goal of proposing a mechanism of antitumor action. The results were correlated with those obtained from electrochemical experiments held in protic (acetate buffer pH 4.5) and aprotic (DMF/TBABF4) media in the presence and absence of oxygen and with those from dsDNA biosensors and ssDNA in solution, which provided evidence of a positive interaction with DNA in the case of QPhNO2. QPhNO2 caused DNA fragmentation and mitochondrial depolarization and induced apoptosis/necrosis in HL-60 cells. Pre-treatment with N-acetyl-l-cysteine partially abolished the observed effects related to the QPhNO2 treatment, including those involving apoptosis induction, indicating a partially redox-dependent mechanism. These findings point to the potential use of the combination of pharmacology and electrochemistry in medicinal chemistry
    corecore