40,727 research outputs found

    Effects of quantum deformation on the spin-1/2 Aharonov-Bohm problem

    Get PDF
    In this letter we study the Aharonov-Bohm problem for a spin-1/2 particle in the quantum deformed framework generated by the κ\kappa-Poincar\'{e}-Hopf algebra. We consider the nonrelativistic limit of the κ\kappa-deformed Dirac equation and use the spin-dependent term to impose an upper bound on the magnitude of the deformation parameter ε\varepsilon. By using the self-adjoint extension approach, we examine the scattering and bound state scenarios. After obtaining the scattering phase shift and the SS-matrix, the bound states energies are obtained by analyzing the pole structure of the latter. Using a recently developed general regularization prescription [Phys. Rev. D. \textbf{85}, 041701(R) (2012)], the self-adjoint extension parameter is determined in terms of the physics of the problem. For last, we analyze the problem of helicity conservation.Comment: 12 pages, no figures, submitted for publicatio

    Remarks on the Aharonov-Casher dynamics in a CPT-odd Lorentz-violating background

    Full text link
    The Aharonov-Casher problem in the presence of a Lorentz-violating background nonminimally coupled to a spinor and a gauge field is examined. Using an approach based on the self-adjoint extension method, an expression for the bound state energies is obtained in terms of the physics of the problem by determining the self-adjoint extension parameter.Comment: Matches published versio

    On the κ\kappa-Dirac Oscillator revisited

    Get PDF
    This Letter is based on the κ\kappa-Dirac equation, derived from the κ\kappa-Poincar\'{e}-Hopf algebra. It is shown that the κ\kappa-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr\mathbf{p}\to\mathbf{p}-im\omega\beta\mathbf{r}, in the κ\kappa-Dirac equation, one obtains the κ\kappa-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0\varepsilon=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.Comment: 5 pages, no figures, accepted for publication in Physics Letters

    The gluon propagator from large asymmetric lattices

    Get PDF
    The Landau-gauge gluon propagator is computed for the SU(3) gauge theory on lattices up to a size of 323×20032^3 \times 200. We use the standard Wilson action at β=6.0\beta = 6.0 and compare our results with previous computations using large asymmetric and symmetric lattices. In particular, we focus on the impact of the lattice geometry and momentum cuts to achieve compatibility between data from symmetric and asymmetric lattices for a large range of momenta.Comment: Poster presented at Lattice2007, Regensburg, July 30 - August 4, 200

    Phase transitions and statistical mechanics for BPS Black Holes in AdS/CFT

    Get PDF
    Using the general framework developed in hep-th/0607056, we study in detail the phase space of BPS Black Holes in AdS, for the case where all three electric charges are equal. Although these solitons are supersymmetric with zero Hawking temperature, it turns out that these Black Holes have rich phase structure with sharp phase transitions associated to a corresponding critical generalized temperature. We are able to rewrite the gravity variables in terms of dual CFT variables and compare the gravity phase diagram with the free dual CFT phase diagram. In particular, the elusive supergravity constraint characteristic of these Black Holes is particulary simple and in fact appears naturally in the dual CFT in the definition of the BPS Index. Armed with this constraint, we find perfect match between BH and free CFT charges up to expected constant factors.Comment: 14 pages, 5 figures, corrected typos and references adde
    • …
    corecore