115,019 research outputs found

    Charge stripe order from antiphase spin spirals in the spin-Fermion model

    Full text link
    We revisit the ground state of the spin-Fermion model within a semiclassical approximation. We demonstrate that antiphase spin spirals, or pi-spirals, whose chirality alternates between consecutive rows (or columns) of local moments, have, for sufficiently high carrier concentration, lower energy than the traditional Shraiman and Siggia spirals. Furthermore, pi-spirals give rise to modulated hopping, anisotropic 1D transport, and charge density wave formation. Finally, we discuss the relevance of pi-spirals to the physics of charge stripe formation in cuprates, such as La(2-x)Sr(x)CuO4.Comment: 4 pages, 3 figure

    Currents and Superpotentials in classical gauge theories: II. Global aspects and the example of Affine gravity

    Get PDF
    The conserved charges associated with gauge symmetries are defined at a boundary component of spacetime because the corresponding Noether current can be rewritten on-shell as the divergence of a superpotential. However, the latter is afflicted by ambiguities. Regge and Teitelboim found a procedure to lift the arbitrariness in the Hamiltonian framework. An alternative covariant formula was proposed by one of us for an arbitrary variation of the superpotential, it depends only on the equations of motion and on the gauge symmetry under consideration. Here we emphasize that in order to compute the charges, it is enough to stay at a boundary of spacetime, without requiring any hypothesis about the bulk or about other boundary components, so one may speak of holographic charges. It is well known that the asymptotic symmetries that lead to conserved charges are really defined at infinity, but the choice of boundary conditions and surface terms in the action and in the charges is usually determined through integration by parts, whereas each component of the boundary should be considered separately. We treat the example of gravity (for any spacetime dimension, with or without cosmological constant), formulated as an affine theory which is a natural generalization of the Palatini and Cartan-Weyl (vielbein) first-order formulations. We then show that the superpotential associated with a Dirichlet boundary condition on the metric (the one needed to treat asymptotically flat or AdS spacetimes) is the one proposed by Katz et al and not that of Komar. We finally discuss the KBL superpotential at null infinity

    On the rotation of ONC stars in the Tsallis formalism context

    Full text link
    The theoretical distribution function of the projected rotational velocity is derived in the context of the Tsallis formalism. The distribution is used to estimate the average for a stellar sample from the Orion Nebula Cloud (ONC), producing an excellent result when compared with observational data. In addition, the value of the parameter q obtained from the distribution of observed rotations reinforces the idea that there is a relation between this parameter and the age of the cluster.Comment: 6 pages, 2 figure

    Characterization of curves that lie on a geodesic sphere or on a totally geodesic hypersurface in a hyperbolic space or in a sphere

    Get PDF
    The consideration of the so-called rotation minimizing frames allows for a simple and elegant characterization of plane and spherical curves in Euclidean space via a linear equation relating the coefficients that dictate the frame motion. In this work, we extend these investigations to characterize curves that lie on a geodesic sphere or totally geodesic hypersurface in a Riemannian manifold of constant curvature. Using that geodesic spherical curves are normal curves, i.e., they are the image of an Euclidean spherical curve under the exponential map, we are able to characterize geodesic spherical curves in hyperbolic spaces and spheres through a non-homogeneous linear equation. Finally, we also show that curves on totally geodesic hypersurfaces, which play the role of hyperplanes in Riemannian geometry, should be characterized by a homogeneous linear equation. In short, our results give interesting and significant similarities between hyperbolic, spherical, and Euclidean geometries.Comment: 15 pages, 3 figures; comments are welcom

    Characterization of manifolds of constant curvature by spherical curves

    Full text link
    It is known that the so-called rotation minimizing (RM) frames allow for a simple and elegant characterization of geodesic spherical curves in Euclidean, hyperbolic, and spherical spaces through a certain linear equation involving the coefficients that dictate the RM frame motion (da Silva, da Silva in Mediterr J Math 15:70, 2018). Here, we shall prove the converse, i.e., we show that if all geodesic spherical curves on a Riemannian manifold are characterized by a certain linear equation, then all the geodesic spheres with a sufficiently small radius are totally umbilical and, consequently, the given manifold has constant sectional curvature. We also furnish two other characterizations in terms of (i) an inequality involving the mean curvature of a geodesic sphere and the curvature function of their curves and (ii) the vanishing of the total torsion of closed spherical curves in the case of three-dimensional manifolds. Finally, we also show that the same results are valid for semi-Riemannian manifolds of constant sectional curvature.Comment: To appear in Annali di Matematica Pura ed Applicat

    Gaussian Process Structural Equation Models with Latent Variables

    Full text link
    In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been well-studied, inference in nonparametric structural equation models is still underdeveloped. We introduce a sparse Gaussian process parameterization that defines a non-linear structure connecting latent variables, unlike common formulations of Gaussian process latent variable models. The sparse parameterization is given a full Bayesian treatment without compromising Markov chain Monte Carlo efficiency. We compare the stability of the sampling procedure and the predictive ability of the model against the current practice.Comment: 12 pages, 6 figure

    Characterization of Spherical and Plane Curves Using Rotation Minimizing Frames

    Get PDF
    In this work, we study plane and spherical curves in Euclidean and Lorentz-Minkowski 3-spaces by employing rotation minimizing (RM) frames. By conveniently writing the curvature and torsion for a curve on a sphere, we show how to find the angle between the principal normal and an RM vector field for spherical curves. Later, we characterize plane and spherical curves as curves whose position vector lies, up to a translation, on a moving plane spanned by their unit tangent and an RM vector field. Finally, as an application, we characterize Bertrand curves as curves whose so-called natural mates are spherical.Comment: 8 pages. This version is an improvement of the previous one. In addition to a study of some properties of plane and spherical curves, it contains a characterization of Bertrand curves in terms of the so-called natural mate
    • …
    corecore