1,246 research outputs found
Fractional vortices on grain boundaries --- the case for broken time reversal symmetry in high temperature superconductors
We discuss the problem of broken time reversal symmetry near grain boundaries
in a d-wave superconductor based on a Ginzburg-Landau theory. It is shown that
such a state can lead to fractional vortices on the grain boundary. Both
analytical and numerical results show the structure of this type of state.Comment: 9 pages, RevTeX, 5 postscript figures include
Virtual competitors influence rowers
Highly immersive environments for sports simulation can help elucidate if and how athletes perform under high pressure situations. We used a rowing simulator with a CAVE setup to test the influence of virtual competitors on 10 experienced rowers. All participants were using the simulator for the first time. The objective was to assess the degree of presence by quantifying how the actions of the virtual competitors triggered behavioral changes in the experienced rowers. The participants completed a virtual 2000 m race with two competing boats, one being behind and one ahead of the participant. For two trials, each boat would come closer to the participant without overtaking, resulting in four experimental conditions. The behavior of the participants was assessed with biomechanical variables, questionnaires, and an interview after the race. Behavioral changes were detected with statistically significant differences in the extracted variables of oar angles, timing variables, velocities, and work. The results for biomechanical variables indicate individual response patterns depending on perception of competitors and self-confidence. Self-reporting indicated a high degree of presence for most participants. Overall, the experimental paradigm worked but was compromised by perceptive and subjective factors. In future, the setup will be used to investigate rowing performance further with a focus on motor learning and training of pressure situations
Modulated resonant versus pulsed resonant photoacoustics intrace gas detection
Modulated resonant photoacoustics is a sensitive technique widely used for trace gas sensing. Generally, a continuous-wave laser is modulated at a frequency corresponding to an acoustic resonance of a photoacoustic cell. Another mode of operation—which we propose to call the pulsed resonant mode—consists in matching the frequency repetition rate of a pulsed laser to an acoustic resonance of the cell. We present a theoretical model to compare the performance of these two configurations. For a given average power of the incoming light inside the cell, the pulsed resonant mode of operation (nanosecond pulses or shorter) produces π/2 times higher photoacoustic signals than the modulated resonant scheme (the latter is optimized for a 50% duty cycle). This result agrees with experiments during which both cases were investigated at 532nm using the same photoacoustic cell containing trace concentrations of NO
Phenomenological theory of the 3 Kelvin phase in Sr2RuO4
We model the 3K-phase of Sr2RuO4 with Ru-metal inclusion as interface state
with locally enhanced transition temperatures. The resulting 3K-phase must have
a different pairing symmetry than the bulk phase of Sr2RuO4, because the
symmetry at the interface is lower than in the bulk. It is invariant under time
reversal and a second transition, in general, above the onset of bulk
superconductivity is expected where time reversal symmetry is broken. The
nucleation of the 3K-phase exhibits a ``capillary effect'' which can lead to
frustration phenomena for the superconducting states on different
Ru-inclusions. Furthermore, the phase structure of the pair wave function gives
rise to zero-energy quasiparticle states which would be visible in
quasiparticle tunneling spectra. Additional characteristic properties are
associated with the upper critical field Hc2. The 3K-phase has a weaker
anisotropy of Hc2 between the inplane and z-axis orientation than the bulk
superconducting phase. This is connected with the more isotropic nature
Ru-metal which yields a stronger orbital depairing effect for the inplane
magnetic field than in the strongly layered Sr$_2RuO4. An anomalous temperature
dependence for the z-axis critical field is found due to the coupling of the
magnetic field to the order parameter texture at the interface. Various other
experiments are discussed and new measurements are suggested.Comment: 10 pages, 5 figure
One-dimensional Kondo lattice at partial band filling
An effective Hamiltonian for the localized spins in the one-dimensional Kondo
lattice model is derived via a unitary transformation involving a bosonization
of delocalized conduction electrons. The effective Hamiltonian is shown to
reproduce all the features of the model as identified in various numerical
simulations, and provides much new information on the ferro- to paramagnetic
phase transition and the paramagnetic phase.Comment: 11 pages Revtex, 1 Postscript figure. To appear in Phys. Rev. Let
Local Moments Coupled to a Strongly Correlated Electron Chain
A 1D model hamiltonian that is motivated by the recent discovery of the
heavy-fermion behavior in the cuprates of the type is studied. It
consists of interacting conduction electrons coupled to a lattice of
localized spins through a Kondo exchange term . Exact diagonalization and
density matrix renormalization group methods are used. The latter method is
generalized to arbitrary densities. At half-filling, a spin gap opens for all
. Away from half-filling it is shown that, at strong % , the
ground state is an unsaturated ferromagnet . At weak the system is in a
paramagnetic phase with enhanced RKKY correlations. The importance of
self-screening of the local moments in the depletion regime is discussed. We
argue that these findings transcend the specifics of the model.Comment: 10 pages, Latex, 4 figures included, to be published in PRB (Rapid
Communications
Instabilities at [110] Surfaces of d_{x^2-y^2} Superconductors
We compare different scenarios for the low temperature splitting of the
zero-energy peak in the local density of states at (110) surfaces of
d_{x^2-y^2}-wave superconductors, observed by Covington et al.
(Phys.Rev.Lett.79 (1997), 277). Using a tight binding model in the
Bogolyubov-de Gennes treatment we find a surface phase transition towards a
time-reversal symmetry breaking surface state carrying spontaneous currents and
an s+id-wave state. Alternatively, we show that electron correlation leads to a
surface phase transition towards a magnetic state corresponding to a local spin
density wave state.Comment: 4 pages, 5 figure
Spin Gap in a Doped Kondo Chain
We show that the Kondo chain away from half-filling has a spin gap upon the
introduction of an additional direct Heisenberg coupling between localized
spins. This is understood in the weak-Kondo-coupling limit of the
Heisenberg-Kondo lattice model by bosonization and in the strong-coupling limit
by a mapping to a modified t-J model. Only for certain ranges of filling and
Heisenberg coupling does the spin gap phase extend from weak to strong
coupling.Comment: 4 pages RevTeX including 4 eps figures; minor corrections and
clarification
- …