1,241 research outputs found

    Fractional vortices on grain boundaries --- the case for broken time reversal symmetry in high temperature superconductors

    Full text link
    We discuss the problem of broken time reversal symmetry near grain boundaries in a d-wave superconductor based on a Ginzburg-Landau theory. It is shown that such a state can lead to fractional vortices on the grain boundary. Both analytical and numerical results show the structure of this type of state.Comment: 9 pages, RevTeX, 5 postscript figures include

    Virtual competitors influence rowers

    Full text link
    Highly immersive environments for sports simulation can help elucidate if and how athletes perform under high pressure situations. We used a rowing simulator with a CAVE setup to test the influence of virtual competitors on 10 experienced rowers. All participants were using the simulator for the first time. The objective was to assess the degree of presence by quantifying how the actions of the virtual competitors triggered behavioral changes in the experienced rowers. The participants completed a virtual 2000 m race with two competing boats, one being behind and one ahead of the participant. For two trials, each boat would come closer to the participant without overtaking, resulting in four experimental conditions. The behavior of the participants was assessed with biomechanical variables, questionnaires, and an interview after the race. Behavioral changes were detected with statistically significant differences in the extracted variables of oar angles, timing variables, velocities, and work. The results for biomechanical variables indicate individual response patterns depending on perception of competitors and self-confidence. Self-reporting indicated a high degree of presence for most participants. Overall, the experimental paradigm worked but was compromised by perceptive and subjective factors. In future, the setup will be used to investigate rowing performance further with a focus on motor learning and training of pressure situations

    Modulated resonant versus pulsed resonant photoacoustics intrace gas detection

    Get PDF
    Modulated resonant photoacoustics is a sensitive technique widely used for trace gas sensing. Generally, a continuous-wave laser is modulated at a frequency corresponding to an acoustic resonance of a photoacoustic cell. Another mode of operation—which we propose to call the pulsed resonant mode—consists in matching the frequency repetition rate of a pulsed laser to an acoustic resonance of the cell. We present a theoretical model to compare the performance of these two configurations. For a given average power of the incoming light inside the cell, the pulsed resonant mode of operation (nanosecond pulses or shorter) produces π/2 times higher photoacoustic signals than the modulated resonant scheme (the latter is optimized for a 50% duty cycle). This result agrees with experiments during which both cases were investigated at 532nm using the same photoacoustic cell containing trace concentrations of NO

    Phenomenological theory of the 3 Kelvin phase in Sr2RuO4

    Full text link
    We model the 3K-phase of Sr2RuO4 with Ru-metal inclusion as interface state with locally enhanced transition temperatures. The resulting 3K-phase must have a different pairing symmetry than the bulk phase of Sr2RuO4, because the symmetry at the interface is lower than in the bulk. It is invariant under time reversal and a second transition, in general, above the onset of bulk superconductivity is expected where time reversal symmetry is broken. The nucleation of the 3K-phase exhibits a ``capillary effect'' which can lead to frustration phenomena for the superconducting states on different Ru-inclusions. Furthermore, the phase structure of the pair wave function gives rise to zero-energy quasiparticle states which would be visible in quasiparticle tunneling spectra. Additional characteristic properties are associated with the upper critical field Hc2. The 3K-phase has a weaker anisotropy of Hc2 between the inplane and z-axis orientation than the bulk superconducting phase. This is connected with the more isotropic nature Ru-metal which yields a stronger orbital depairing effect for the inplane magnetic field than in the strongly layered Sr$_2RuO4. An anomalous temperature dependence for the z-axis critical field is found due to the coupling of the magnetic field to the order parameter texture at the interface. Various other experiments are discussed and new measurements are suggested.Comment: 10 pages, 5 figure

    One-dimensional Kondo lattice at partial band filling

    Full text link
    An effective Hamiltonian for the localized spins in the one-dimensional Kondo lattice model is derived via a unitary transformation involving a bosonization of delocalized conduction electrons. The effective Hamiltonian is shown to reproduce all the features of the model as identified in various numerical simulations, and provides much new information on the ferro- to paramagnetic phase transition and the paramagnetic phase.Comment: 11 pages Revtex, 1 Postscript figure. To appear in Phys. Rev. Let

    Local Moments Coupled to a Strongly Correlated Electron Chain

    Full text link
    A 1D model hamiltonian that is motivated by the recent discovery of the heavy-fermion behavior in the cuprates of the Nd2CuO4Nd_2CuO_4 type is studied. It consists of tJt-J interacting conduction electrons coupled to a lattice of localized spins through a Kondo exchange term JKJ_K. Exact diagonalization and density matrix renormalization group methods are used. The latter method is generalized to arbitrary densities. At half-filling, a spin gap opens for all JK>0J_K>0. Away from half-filling,, it is shown that, at strong JKJ_K% , the ground state is an unsaturated ferromagnet . At weak JKJ_K the system is in a paramagnetic phase with enhanced RKKY correlations. The importance of self-screening of the local moments in the depletion regime is discussed. We argue that these findings transcend the specifics of the model.Comment: 10 pages, Latex, 4 figures included, to be published in PRB (Rapid Communications

    Instabilities at [110] Surfaces of d_{x^2-y^2} Superconductors

    Full text link
    We compare different scenarios for the low temperature splitting of the zero-energy peak in the local density of states at (110) surfaces of d_{x^2-y^2}-wave superconductors, observed by Covington et al. (Phys.Rev.Lett.79 (1997), 277). Using a tight binding model in the Bogolyubov-de Gennes treatment we find a surface phase transition towards a time-reversal symmetry breaking surface state carrying spontaneous currents and an s+id-wave state. Alternatively, we show that electron correlation leads to a surface phase transition towards a magnetic state corresponding to a local spin density wave state.Comment: 4 pages, 5 figure

    Spin Gap in a Doped Kondo Chain

    Full text link
    We show that the Kondo chain away from half-filling has a spin gap upon the introduction of an additional direct Heisenberg coupling between localized spins. This is understood in the weak-Kondo-coupling limit of the Heisenberg-Kondo lattice model by bosonization and in the strong-coupling limit by a mapping to a modified t-J model. Only for certain ranges of filling and Heisenberg coupling does the spin gap phase extend from weak to strong coupling.Comment: 4 pages RevTeX including 4 eps figures; minor corrections and clarification
    corecore