352 research outputs found

    IFCC recommendation on sampling, transport and storage for the determination of the concentration of ionized calcium in whole blood, plasma and serum

    Get PDF
    The substance concentration of ionized calcium (c Ca2+) in blood, plasma or serum preanalytically may be affected by pH changes of the sample, calcium binding by heparin, and dilution by the anticoagulant solution

    International Federation of Clinical Chemistry (IFCC): Scientific Division, Committee on pH, Blood Gases and Electrolytes: Guidelines for Transcutaneouspo2andpco2 Measurement

    Get PDF
    This document provides guidelines for the terminology, methodology, and for the interpretation of data obtained from the use of skin (transcutaneous) po2 and pco2 electrodes. The transcutaneous technique has found special application in newborn infants. The causes of analytical bias with respect to arterial blood gas values, and imprecision obtained with transcutaneous pco2 electrodes, are reviewed. Electrode temperatures above 44°C should not be used routinely, and, at a measuring temperature of 44°C, the measuring site should be changed at least every 4 h to avoid skin burns

    Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia

    Get PDF
    Abstract Background Base deficit (BD), anion gap (AG), and albumin corrected anion gap (ACAG) are used by clinicians to assess the presence or absence of hyperlactatemia (HL). We set out to determine if these tools can diagnose the presence of HL using cotemporaneous samples. Methods We conducted a chart review of ICU patients who had cotemporaneous arterial blood gas, serum chemistry, serum albumin (Alb) and lactate(Lac) levels measured from the same sample. We assessed the capacity of AG, BD, and ACAG to diagnose HL and severe hyperlactatemia (SHL). HL was defined as Lac > 2.5 mmol/L. SHL was defined as a Lac of > 4.0 mmol/L. Results From 143 patients we identified 497 series of lab values that met our study criteria. Mean age was 62.2 ± 15.7 years. Mean Lac was 2.11 ± 2.6 mmol/L, mean AG was 9.0 ± 5.1, mean ACAG was 14.1 ± 3.8, mean BD was 1.50 ± 5.4. The area under the curve for the ROC for BD, AG, and ACAG to diagnose HL were 0.79, 0.70, and 0.72, respectively. Conclusion AG and BD failed to reliably detect the presence of clinically significant hyperlactatemia. Under idealized conditions, ACAG has the capacity to rule out the presence of hyperlactatemia. Lac levels should be obtained routinely in all patients admitted to the ICU in whom the possibility of shock/hypoperfusion is being considered. If an AG assessment is required in the ICU, it must be corrected for albumin for there to be sufficient diagnostic utility.</p

    A randomised clinical trial on cardiotocography plus fetal blood sampling versus cardiotocography plus ST-analysis of the fetal electrocardiogram (STANÂź) for intrapartum monitoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiotocography (CTG) is worldwide the method for fetal surveillance during labour. However, CTG alone shows many false positive test results and without fetal blood sampling (FBS), it results in an increase in operative deliveries without improvement of fetal outcome. FBS requires additional expertise, is invasive and has often to be repeated during labour. Two clinical trials have shown that a combination of CTG and ST-analysis of the fetal electrocardiogram (ECG) reduces the rates of metabolic acidosis and instrumental delivery. However, in both trials FBS was still performed in the ST-analysis arm, and it is therefore still unknown if the observed results were indeed due to the ST-analysis or to the use of FBS in combination with ST-analysis.</p> <p>Methods/Design</p> <p>We aim to evaluate the effectiveness of non-invasive monitoring (CTG + ST-analysis) as compared to normal care (CTG + FBS), in a multicentre randomised clinical trial setting. Secondary aims are: 1) to judge whether ST-analysis of fetal electrocardiogram can significantly decrease frequency of performance of FBS or even replace it; 2) perform a cost analysis to establish the economic impact of the two treatment options.</p> <p>Women in labour with a gestational age ≄ 36 weeks and an indication for CTG-monitoring can be included in the trial.</p> <p>Eligible women will be randomised for fetal surveillance with CTG and, if necessary, FBS or CTG combined with ST-analysis of the fetal ECG.</p> <p>The primary outcome of the study is the incidence of serious metabolic acidosis (defined as pH < 7.05 and Bd<sub>ecf </sub>> 12 mmol/L in the umbilical cord artery). Secondary outcome measures are: instrumental delivery, neonatal outcome (Apgar score, admission to a neonatal ward), incidence of performance of FBS in both arms and cost-effectiveness of both monitoring strategies across hospitals.</p> <p>The analysis will follow the intention to treat principle. The incidence of metabolic acidosis will be compared across both groups. Assuming a reduction of metabolic acidosis from 3.5% to 2.1 %, using a two-sided test with an alpha of 0.05 and a power of 0.80, in favour of CTG plus ST-analysis, about 5100 women have to be randomised. Furthermore, the cost-effectiveness of CTG and ST-analysis as compared to CTG and FBS will be studied.</p> <p>Discussion</p> <p>This study will provide data about the use of intrapartum ST-analysis with a strict protocol for performance of FBS to limit its incidence. We aim to clarify to what extent intrapartum ST-analysis can be used without the performance of FBS and in which cases FBS is still needed.</p> <p>Trial Registration Number</p> <p>ISRCTN95732366</p

    High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores

    Get PDF
    Records of chemical impurities from ice cores enable us to reconstruct the past deposition of aerosols onto polar ice sheets and alpine glaciers. Through this they allow us to gain insight into changes of the source, transport and deposition processes that ultimately determine the deposition flux at the coring location. However, the low concentrations of the aerosol species in the ice and the resulting high risk of contamination pose a formidable analytical challenge, especially if long, continuous and highly resolved records are needed. Continuous flow analysis, CFA, the continuous melting, decontamination and analysis of ice-core samples has mostly overcome this issue and has quickly become the de facto standard to obtain high-resolution aerosol records from ice cores after its inception at the University of Bern in the mid-1990s. Here, we present continuous records of calcium (Ca2+), sodium (Na+), ammonium (NH+4), nitrate (NO-3) and electrolytic conductivity at 1 mm depth resolution from the NGRIP (North Greenland Ice Core Project) and NEEM (North Greenland Eemian Ice Drilling) ice cores produced by the Bern Continuous Flow Analysis group in the years 2000 to 2011 (Erhardt et al., 2021). Both of the records were previously used in a number of studies but were never published in full 1 mm resolution. Alongside the 1 mm datasets we provide decadal averages, a detailed description of the methods, relevant references, an assessment of the quality of the data and its usable resolution. Along the way we will also give some historical context on the development of the Bern CFA system. The data is available in full 1 mm and 10-year-averaged resolution on PANGAEA (https://doi.org/10.1594/PANGAEA.935838, Erhardt et al., 2021
    • 

    corecore