13 research outputs found

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Purification of ?5?1 integrin by ligand affinity chromatography

    No full text

    Characterization of humoral and cellular immune features of gamma-irradiated influenza vaccine

    No full text
    The most widely used influenza vaccines are prepared by chemical inactivation. However, chemical, especially formalin, treatment-induced modifications of the antigenic structure of the virus are frequently associated with adverse effects including low efficacy of protection, unexpected immune responses, or exacerbation of disease. Gamma-irradiation was suggested as an alternative influenza virus inactivation method due to its great features of completely inactivating virus while not damaging the structures of protein antigens, and cross-protective ability against heterologous strains. However, immunological features of gamma radiation-inactivated influenza vaccine have not been fully understood. In this study, we aimed to investigate the humoral and cellular immune responses of gamma radiation-inactivated influenza vaccine. The gamma irradiation-inactivated influenza vaccine (RADVAXFluA) showed complete viral inactivation but retained normal viral structure with functional activities of viral protein antigens. Intranasal immunization of RADVAXFluA provided better protection against influenza virus infection than formalin-inactivated influenza virus (FIV) in mice. RADVAXFluA greatly enhanced the production of virus-specific serum IgG and alveolar mucosal IgA, which effectively neutralized HA (hemagglutinin) and NA (neuraminidase) activities, and blocked viral binding to the cells, respectively. Further analysis of IgG subclasses showed RADVAXFluA-immunized sera had higher levels of IgG1 and IgG2a than those of FIV-immunized sera. In addition, analysis of cellular immunity found RADVAXFluA induced strong dendritic cells (DC) activation resulting in higher DC-mediated activation of CD8+ T cells than FIV. The results support improved immunogenicity by RADVAXFluA

    Polyethylene glycol-induced precipitation of interferon alpha-2a followed by vacuum drying: Development of a novel process for obtaining a dry, stable powder

    No full text
    Feasibility studies were performed on the development of a novel process based on polyethylene glycol (PEG)-induced precipitation of proteins followed by vacuum drying in the presence of sugars to obtain dry protein powders. Apparent solubility of interferon alpha-2a (IFNα2a) was determined in the presence of various PEGs and the effect of solution pH, ionic strength, and temperature was investigated. IFNα2a precipitate was dried at a shelf temperature of 25°C at 100 mTorr either as it is or in the presence of mannitol and/or trehalose. The dried IFNα2a formulations were subjected to accelerated stability studies at 40°C (3 months), and the stability was compared with that of a similar lyophilized formulation. The results indicated that more than 90% of the protein could be precipitated using 10% wt/vol PEG the protein could be precipitated using 10% wt/vol PEG 1450 at pH 6.5 at a solution ionic strength of 71 mM. Vacuum drying of the precipitate only resulted in the formation of insoluble aggregates of IFNα2a; however, this was prevented by the addition of either mannitol or trehalose. The addition of excess mannitol resulted in low residual moisture content and better handling of the final dried product. Accelerated storage stability did not show any aggregation and showed less than 5% formation of oxidized IFNα2a in the dried formulation containing IFNα2a: trehalose: mannitol in a 1∶10∶100 wt/wt ratio upon storage at 40°C for 3 months. The stability of this vacuum dried formulation was comparable with that of a similar lyophilized formulation

    Asymptomatic deer excrete infectious prions in faeces

    No full text
    Infectious prion diseases-scrapie of sheep and chronic wasting disease (CWD) of several species in the deer family-are transmitted naturally within affected host populations. Although several possible sources of contagion have been identified in excretions and secretions from symptomatic animals, the biological importance of these sources in sustaining epidemics remains unclear. Here we show that asymptomatic CWD-infected mule deer (Odocoileus hemionus) excrete CWD prions in their faeces long before they develop clinical signs of prion disease. Intracerebral inoculation of irradiated deer faeces into transgenic mice overexpressing cervid prion protein (PrP) revealed infectivity in 14 of 15 faecal samples collected from five deer at 7-11 months before the onset of neurological disease. Although prion concentrations in deer faeces were considerably lower than in brain tissue from the same deer collected at the end of the disease, the estimated total infectious dose excreted in faeces by an infected deer over the disease course may approximate the total contained in a brain. Prolonged faecal prion excretion by infected deer provides a plausible natural mechanism that might explain the high incidence and efficient horizontal transmission of CWD within deer herds, as well as prion transmission among other susceptible cervids
    corecore