6,708 research outputs found

    Gene structure of the human receptor tyrosine kinase Ron and mutation analysis in lung cancer samples.

    Get PDF

    Electronic nematic correlations in the stress free tetragonal state of BaFe2x_{2-x}Nix_{x}As2_{2}

    Full text link
    We use transport and neutron scattering to study electronic, structural, and magnetic properties of the electron-doped BaFe2x_{2-x}Nix_xAs2_2 iron pnictides in the external stress free detwinned state. Using a specially designed in-situ mechanical detwinning device, we demonstrate that the in-plane resistivity anisotropy observed in the uniaxial strained tetragonal state of BaFe2x_{2-x}Nix_xAs2_2 below a temperature TT^\ast, previously identified as a signature of the electronic nematic phase, is also present in the stress free tetragonal phase below TT^{\ast\ast} (<T<T^\ast). By carrying out neutron scattering measurements on BaFe2_2As2_2 and BaFe1.97_{1.97}Ni0.03_{0.03}As2_2, we argue that the resistivity anisotropy in the stress free tetragonal state of iron pnictides arises from the magnetoelastic coupling associated with antiferromagnetic order. These results thus indicate that the local lattice distortion and nematic spin correlations are responsible for the resistivity anisotropy in the tetragonal state of iron pnictides.Comment: 5 pages, 4 figure

    Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme

    Full text link
    Spin-polarised radio-frequency currents, whose frequency is equal to that of the gyrotropic mode, will cause an excitation of the core of a magnetic vortex confined in a magnetic tunnel junction. When the excitation radius of the vortex core is greater than that of the junction radius, vortex core expulsion is observed, leading to a large change in resistance, as the layer enters a predominantly uniform magnetisation state. Unlike the conventional spin-torque diode effect, this highly tunable resonant effect will generate a voltage which does not decrease as a function of rf power, and has the potential to form the basis of a new generation of tunable nanoscale radio-frequency detectors

    Effect of anisotropy on the ground-state magnetic ordering of the spin-one quantum J1XXZJ_{1}^{XXZ}--J2XXZJ_{2}^{XXZ} model on the square lattice

    Get PDF
    We study the zero-temperature phase diagram of the J1XXZJ_{1}^{XXZ}--J2XXZJ_{2}^{XXZ} Heisenberg model for spin-1 particles on an infinite square lattice interacting via nearest-neighbour (J11J_1 \equiv 1) and next-nearest-neighbour (J2>0J_2 > 0) bonds. Both bonds have the same XXZXXZ-type anisotropy in spin space. The effects on the quasiclassical N\'{e}el-ordered and collinear stripe-ordered states of varying the anisotropy parameter Δ\Delta is investigated using the coupled cluster method carried out to high orders. By contrast with the spin-1/2 case studied previously, we predict no intermediate disordered phase between the N\'{e}el and collinear stripe phases, for any value of the frustration J2/J1J_2/J_1, for either the zz-aligned (Δ>1\Delta > 1) or xyxy-planar-aligned (0Δ<10 \leq \Delta < 1) states. The quantum phase transition is determined to be first-order for all values of J2/J1J_2/J_1 and Δ\Delta. The position of the phase boundary J2c(Δ)J_{2}^{c}(\Delta) is determined accurately. It is observed to deviate most from its classical position J2c=1/2J_2^c = {1/2} (for all values of Δ>0\Delta > 0) at the Heisenberg isotropic point (Δ=1\Delta = 1), where J2c(1)=0.55±0.01J_{2}^{c}(1) = 0.55 \pm 0.01. By contrast, at the XY isotropic point (Δ=0\Delta = 0), we find J2c(0)=0.50±0.01J_{2}^{c}(0) = 0.50 \pm 0.01. In the Ising limit (Δ\Delta \to \infty) J2c0.5J_2^c \to 0.5 as expected.Comment: 20 pages, 5 figure

    Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions

    Full text link
    Spin polarized current can excite the magnetization of a ferromagnet through the transfer of spin angular momentum to the local spin system. This pure spin-related transport phenomena leads to alluring possibilities for the achievement of a nanometer scale, CMOS compatible and tunable microwave generator operating at low bias for future wireless communications. Microwave emission generated by the persitent motion of magnetic vortices induced by spin transfer effect seems to be a unique manner to reach appropriate spectral linewidth. However, in metallic systems, where such vortex oscillations have been observed, the resulting microwave power is much too small. Here we present experimental evidences of spin-transfer induced core vortex precessions in MgO-based magnetic tunnel junctions with similar good spectral quality but an emitted power at least one order of magnitude stronger. More importantly, unlike to others spin transfer excitations, the thorough comparison between experimental results and models provide a clear textbook illustration of the mechanisms of vortex precessions induced by spin transfer

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Quantum phase transitions

    Full text link
    In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behavior of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions are boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed on bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview over a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics.Comment: 50 pages, 7 figs; (v2) final version as publishe

    Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?

    Full text link
    There is considerable evidence for some form of charge ordering on the hole-doped stripes in the cuprates, mainly associated with the low-temperature tetragonal phase, but with some evidence for either charge density waves or a flux phase, which is a form of dynamic charge-density wave. These three states form a pseudospin triplet, demonstrating a close connection with the E X e dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller effect as a form of flux phase. A simple model of the Cu-O bond stretching phonons allows an estimate of electron-phonon coupling for these modes, explaining why the half breathing mode softens so much more than the full oxygen breathing mode. The anomalous properties of O2O^{2-} provide a coupling (correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon modes, 16 eps figures, revte

    How to detect fluctuating order in the high-temperature superconductors

    Full text link
    We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems - the exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and greatly improved text; one new figure, one new section, two new appendices and more reference
    corecore