6,708 research outputs found
Gene structure of the human receptor tyrosine kinase Ron and mutation analysis in lung cancer samples.
Electronic nematic correlations in the stress free tetragonal state of BaFeNiAs
We use transport and neutron scattering to study electronic, structural, and
magnetic properties of the electron-doped BaFeNiAs iron
pnictides in the external stress free detwinned state. Using a specially
designed in-situ mechanical detwinning device, we demonstrate that the in-plane
resistivity anisotropy observed in the uniaxial strained tetragonal state of
BaFeNiAs below a temperature , previously identified as
a signature of the electronic nematic phase, is also present in the stress free
tetragonal phase below (). By carrying out neutron
scattering measurements on BaFeAs and BaFeNiAs,
we argue that the resistivity anisotropy in the stress free tetragonal state of
iron pnictides arises from the magnetoelastic coupling associated with
antiferromagnetic order. These results thus indicate that the local lattice
distortion and nematic spin correlations are responsible for the resistivity
anisotropy in the tetragonal state of iron pnictides.Comment: 5 pages, 4 figure
Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme
Spin-polarised radio-frequency currents, whose frequency is equal to that of
the gyrotropic mode, will cause an excitation of the core of a magnetic vortex
confined in a magnetic tunnel junction. When the excitation radius of the
vortex core is greater than that of the junction radius, vortex core expulsion
is observed, leading to a large change in resistance, as the layer enters a
predominantly uniform magnetisation state. Unlike the conventional spin-torque
diode effect, this highly tunable resonant effect will generate a voltage which
does not decrease as a function of rf power, and has the potential to form the
basis of a new generation of tunable nanoscale radio-frequency detectors
Effect of anisotropy on the ground-state magnetic ordering of the spin-one quantum -- model on the square lattice
We study the zero-temperature phase diagram of the
-- Heisenberg model for spin-1 particles on an
infinite square lattice interacting via nearest-neighbour () and
next-nearest-neighbour () bonds. Both bonds have the same -type
anisotropy in spin space. The effects on the quasiclassical N\'{e}el-ordered
and collinear stripe-ordered states of varying the anisotropy parameter
is investigated using the coupled cluster method carried out to high
orders. By contrast with the spin-1/2 case studied previously, we predict no
intermediate disordered phase between the N\'{e}el and collinear stripe phases,
for any value of the frustration , for either the -aligned () or -planar-aligned () states. The quantum phase
transition is determined to be first-order for all values of and
. The position of the phase boundary is determined
accurately. It is observed to deviate most from its classical position (for all values of ) at the Heisenberg isotropic point
(), where . By contrast, at the XY
isotropic point (), we find . In the
Ising limit () as expected.Comment: 20 pages, 5 figure
Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions
Spin polarized current can excite the magnetization of a ferromagnet through
the transfer of spin angular momentum to the local spin system. This pure
spin-related transport phenomena leads to alluring possibilities for the
achievement of a nanometer scale, CMOS compatible and tunable microwave
generator operating at low bias for future wireless communications. Microwave
emission generated by the persitent motion of magnetic vortices induced by spin
transfer effect seems to be a unique manner to reach appropriate spectral
linewidth. However, in metallic systems, where such vortex oscillations have
been observed, the resulting microwave power is much too small. Here we present
experimental evidences of spin-transfer induced core vortex precessions in
MgO-based magnetic tunnel junctions with similar good spectral quality but an
emitted power at least one order of magnitude stronger. More importantly,
unlike to others spin transfer excitations, the thorough comparison between
experimental results and models provide a clear textbook illustration of the
mechanisms of vortex precessions induced by spin transfer
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
Quantum phase transitions
In recent years, quantum phase transitions have attracted the interest of
both theorists and experimentalists in condensed matter physics. These
transitions, which are accessed at zero temperature by variation of a
non-thermal control parameter, can influence the behavior of electronic systems
over a wide range of the phase diagram. Quantum phase transitions occur as a
result of competing ground state phases. The cuprate superconductors which can
be tuned from a Mott insulating to a d-wave superconducting phase by carrier
doping are a paradigmatic example. This review introduces important concepts of
phase transitions and discusses the interplay of quantum and classical
fluctuations near criticality. The main part of the article is devoted to bulk
quantum phase transitions in condensed matter systems. Several classes of
transitions will be briefly reviewed, pointing out, e.g., conceptual
differences between ordering transitions in metallic and insulating systems. An
interesting separate class of transitions are boundary phase transitions where
only degrees of freedom of a subsystem become critical; this will be
illustrated in a few examples. The article is aimed on bridging the gap between
high-level theoretical presentations and research papers specialized in certain
classes of materials. It will give an overview over a variety of different
quantum transitions, critically discuss open theoretical questions, and
frequently make contact with recent experiments in condensed matter physics.Comment: 50 pages, 7 figs; (v2) final version as publishe
Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?
There is considerable evidence for some form of charge ordering on the
hole-doped stripes in the cuprates, mainly associated with the low-temperature
tetragonal phase, but with some evidence for either charge density waves or a
flux phase, which is a form of dynamic charge-density wave. These three states
form a pseudospin triplet, demonstrating a close connection with the E X e
dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of
Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller
effect as a form of flux phase. A simple model of the Cu-O bond stretching
phonons allows an estimate of electron-phonon coupling for these modes,
explaining why the half breathing mode softens so much more than the full
oxygen breathing mode. The anomalous properties of provide a coupling
(correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon
modes, 16 eps figures, revte
How to detect fluctuating order in the high-temperature superconductors
We discuss fluctuating order in a quantum disordered phase proximate to a
quantum critical point, with particular emphasis on fluctuating stripe order.
Optimal strategies for extracting information concerning such local order from
experiments are derived with emphasis on neutron scattering and scanning
tunneling microscopy. These ideas are tested by application to two model
systems - the exactly solvable one dimensional electron gas with an impurity,
and a weakly-interacting 2D electron gas. We extensively review experiments on
the cuprate high-temperature superconductors which can be analyzed using these
strategies. We adduce evidence that stripe correlations are widespread in the
cuprates. Finally, we compare and contrast the advantages of two limiting
perspectives on the high-temperature superconductor: weak coupling, in which
correlation effects are treated as a perturbation on an underlying metallic
(although renormalized) Fermi liquid state, and strong coupling, in which the
magnetism is associated with well defined localized spins, and stripes are
viewed as a form of micro-phase separation. We present quantitative indicators
that the latter view better accounts for the observed stripe phenomena in the
cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and
greatly improved text; one new figure, one new section, two new appendices
and more reference
- …
