57 research outputs found

    Alteration of gastric microbiota and transcriptome in a rat with gastric intestinal metaplasia induced by deoxycholic acid

    Get PDF
    ObjectiveBile reflux plays a key role in the development of gastric intestinal metaplasia (GIM), an independent risk factor of gastric cancer. Here, we aimed to explore the biological mechanism of GIM induced by bile reflux in a rat model.MethodsRats were treated with 2% sodium salicylate and allowed to freely drink 20 mmol/L sodium deoxycholate for 12 weeks, and GIM was confirmed by histopathological analysis. Gastric microbiota was profiled according to the 16S rDNA V3–V4 region, gastric transcriptome was sequenced, and serum bile acids (BAs) were analyzed by targeted metabolomics. Spearman's correlation analysis was used in constructing the network among gastric microbiota, serum BAs, and gene profiles. Real-time polymerase chain reaction (RT-PCR) measured the expression levels of nine genes in the gastric transcriptome.ResultsIn the stomach, deoxycholic acid (DCA) decreased the microbial diversity but promoted the abundances of several bacterial genera, such as Limosilactobacillus, Burkholderia–Caballeronia–Paraburkholderia, and Rikenellaceae RC9 gut group. Gastric transcriptome showed that the genes enriched in gastric acid secretion were significantly downregulated, whereas the genes enriched in fat digestion and absorption were obviously upregulated in GIM rats. The GIM rats had four promoted serum BAs, namely cholic acid (CA), DCA, taurocholic acid, and taurodeoxycholic acid. Further correlation analysis showed that the Rikenellaceae RC9 gut group was significantly positively correlated with DCA and RGD1311575 (capping protein-inhibiting regulator of actin dynamics), and RGD1311575 was positively correlated with Fabp1 (fatty acid-binding protein, liver), a key gene involved in fat digestion and absorption. Finally, the upregulated expression of Dgat1 (diacylglycerol acyltransferase 1) and Fabp1 related to fat digestion and absorption was identified by RT-PCR and IHC.ConclusionDCA-induced GIM enhanced gastric fat digestion and absorption function and impaired gastric acid secretion function. The DCA–Rikenellaceae RC9 gut group–RGD1311575/Fabp1 axis might play a key role in the mechanism of bile reflux-related GIM

    Systematic Analysis of Non-coding RNAs Involved in the Angora Rabbit (Oryctolagus cuniculus) Hair Follicle Cycle by RNA Sequencing

    Get PDF
    The hair follicle (HF) cycle is a complicated and dynamic process in mammals, associated with various signaling pathways and gene expression patterns. Non-coding RNAs (ncRNAs) are RNA molecules that are not translated into proteins but are involved in the regulation of various cellular and biological processes. This study explored the relationship between ncRNAs and the HF cycle by developing a synchronization model in Angora rabbits. Transcriptome analysis was performed to investigate ncRNAs and mRNAs associated with the various stages of the HF cycle. One hundred and eleven long non-coding RNAs (lncRNAs), 247 circular RNAs (circRNAs), 97 microRNAs (miRNAs), and 1,168 mRNAs were differentially expressed during the three HF growth stages. Quantitative real-time PCR was used to validate the ncRNA transcriptome analysis results. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses provided information on the possible roles of ncRNAs and mRNAs during the HF cycle. In addition, lncRNA–miRNA–mRNA and circRNA–miRNA–mRNA ceRNA networks were constructed to investigate the underlying relationships between ncRNAs and mRNAs. LNC_002919 and novel_circ_0026326 were found to act as ceRNAs and participated in the regulation of the HF cycle as miR-320-3p sponges. This research comprehensively identified candidate regulatory ncRNAs during the HF cycle by transcriptome analysis, highlighting the possible association between ncRNAs and the regulation of hair growth. This study provides a basis for systematic further research and new insights on the regulation of the HF cycle

    Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries

    Get PDF
    Continuous composite fibers have been obtained by online modifying the direct-spun carbon nanotube (CNT) fibers with active materials (LiFePO 4 or LiTi 2 PO 4 ) through dipping and twisting. The composite fibers exhibit high specific capacity and good rate performance for an aqueous lithium-ion battery with 1 M Li 2 SO 4 electrolyte, due to the fast electron transport arising from the close contact between the active materials and CNTs. A flexible fiber-shaped aqueous lithium-ion battery fabricated from the composites can deliver a high specific capacity of 29.1 mAh g −1 at a current density of 0.25 A g −1 and a high energy density of 30.12 Wh kg −1 , showing the great potential of the composite fibers for applications in flexible energy storage devices

    Distribution Characteristics of Microplastics in Surface Seawater off the Yangtze River Estuary Section and Analysis of Ecological Risk Assessment

    No full text
    Microplastics are widespread in the oceans as a new type of pollutant. Due to the special geographical environment characteristics, the Yangtze River estuary region become hotspot for microplastics research. In 2017 and 2019, surface seawater microplastics samples were collected from five stations off the Yangtze River estuary during four seasons (spring, summer, autumn, and winter). The abundance and characteristics of microplastics in seawater were researched. The results showed that microplastics widely existed in surface seawater; the average abundance of microplastics in seawater was (0.17 ± 0.14) items/m3 (0.00561 ± 0.00462) mg/m3; and accounting for 80% of the total plastic debris, the abundance of microplastics was at moderately low levels compared to national and international studies. The particle size of most microplastics was between 1 mm to 2 mm, accounting for 36.1% of the total microplastics. The main shapes of microplastics were fiber, flake, and line, accounting for 39.5%, 28.4%, and 20.8%, respectively. Polypropylene, polyethylene terephthalate, and polyethylene were the main components of microplastics, accounting for 41.0%, 25.1%, and 24.9%, respectively. Yellow, green, black, and transparent were the most common colors, accounting for 21.9%, 19.6%, 16.5%, and 15.7%, respectively. This study shows that the spatial distribution of microplastics in the surface waters off the Yangtze River estuary shows a decreasing trend from nearshore to farshore due to the influence of land-based inputs, hydrodynamics, and human activities; the distribution of microplastics has obvious seasonal changes, and the level of microplastic pollution is higher in summer. The potential ecological risk of microplastics in the surface waters off the Yangtze River estuary is relatively small

    Research on wheel-legged robot based on LQR and ADRC

    No full text
    Abstract The traditional two-wheeled self-balancing robot can travel quickly in a flat road environment, and it is easy to destabilize and capsize when passing through a bumpy road. To improve the passing ability of a two-wheeled robot, a new wheel-legged two-wheeled robot is developed. A seven-link leg structure is proposed through the comprehensive design of mechanism configuration, which decouples the balanced motion and leg motion of the robot. Based on the Euler–Lagrange method, the dynamic model of the system is obtained by applying the nonholonomic dynamic Routh equation in the generalized coordinate system. The robot’s state space is divided according to the robot’s height, and the Riccati equation is solved in real-time by the linear quadratic regulator (LQR) method to complete the balance and motion control of the robot. The robot leg motion control is achieved based on the active disturbance rejection control (ADRC) way. A robot simulation model is built on Recurdyn to verify the algorithm’s feasibility, and then an experimental prototype is built to demonstrate the algorithm’s effectiveness. The experimental results show that the control method based on LQR and ADRC can make the robot pass through the bumpy road

    Characterization on multiphase microstructures of carbon steels using multi-frequency electromagnetic measurements

    No full text
    Phase composition is dominant in determining mechanical properties of carbon steels therefore is one of important microstructural elements that needs to be characterized and monitored in the steel production process. However, the characterization method usually used in steel production is off-line with destructive inspection. Microstructure characterization using electromagnetic signals can be applied in real time with in-line measurement that can meet requirements of steel continuous productions. The key is to establish the accurate electromagnetic responses to steel microstructure variations. This paper studied responses of electromagnetic signals on carbon steels with different phase compositions using a U-shaped and a cylindrical electromagnetic sensor. Relationships between steel microstructures and electromagnetic signals were established using the multi frequency electromagnetic system for steel samples with low to high carbon grades. Influences of phases, phase fractions, grain size and grain shapes on the relative permeability values were investigated. Results show that the low frequency inductance of electromagnetic signals can be used to distinguish the phase composition and the phase fraction of carbon steels. Effects of sensor lift-off distance and sample edge effects are also studied as requirements of industrial application

    Antiviral Activities of Green Tea Components against Grouper Iridovirus Infection In Vitro and In Vivo

    No full text
    (1) Background: Singapore grouper iridovirus (SGIV) can cause extensive fish deaths. Therefore, developing treatments to combat virulent SGIV is of great economic importance to address this challenge to the grouper aquaculture industry. Green tea is an important medicinal and edible plant throughout the world. In this study, we evaluated the use of green tea components against SGIV infection. (2) Methods: The safe working concentrations of green tea components were identified by cell viability detection and light microscopy. Additionally, the antiviral activity of each green tea component against SGIV infection was determined with light microscopy, an aptamer (Q5c)-based fluorescent molecular probe, and reverse transcription quantitative PCR. (3) Results: The safe working concentrations of green tea components were green tea aqueous extract (GTAE) ≤ 100 μg/mL, green tea polyphenols (TP) ≤ 10 μg/mL, epigallocatechin-3-gallate (EGCG) ≤ 12 μg/mL, (-)-epigallocatechin (EGC) ≤ 10 μg/mL, (-)-epicatechin gallate (EGC) ≤ 5 μg/mL, and (-)-epicatechin (EC) ≤ 50 μg/mL. The relative antiviral activities of the green tea components determined in terms of MCP gene expression were TP > EGCG > GTAE > ECG > EGC > EC, with inhibition rates of 99.34%, 98.31%, 98.23%, 88.62%, 73.80%, and 44.31%, respectively. The antiviral effect of aptamer-Q5c was consistent with the results of qPCR. Also, TP had an excellent antiviral effect in vitro, wherein the mortality of fish in only the SGIV-injection group and TP + SGIV-injection group were 100% and 11.67%, respectively. (4) Conclusions: In conclusion, our results suggest that green tea components have effective antiviral properties against SGIV and may be candidate agents for the effective treatment and control of SGIV infections in grouper aquaculture
    • …
    corecore