19 research outputs found

    Territory wide study of patients with dystrophinopathy in Hong Kong

    Get PDF
    Poster PresentationThis journal issues entitled: 18th International Congress of The World Muscle SocietyThis is a first territory wide study in Hong Kong on Chinese patients with dystrophinopathy on their genetic mutation, motor performance, use of steroid, and the interventions they received. This study is participated by all the paediatric departments in the eleven hospitals in Hong Kong. Clinical data was systemically collected ...postprin

    Prevalence and Characteristics of Chinese Patients With Duchenne and Becker Muscular Dystrophy-A Territory Wide Collaborative Study in Hong Kong

    Get PDF
    The aim of this collaborative study on Duchenne muscular dystrophy and Becker muscular dystrophy is to determine the prevalence and to develop data on such patients as a prelude to the development of registry in Hong Kong. Information on clinical and molecular findings, and patient care, was systematically collected in 2011 and 2012 from all Pediatric Neurology Units in Hong Kong. Ninety patients with dystrophinopathy were identified, and 83% has Duchenne muscular dystrophy. The overall prevalence of dystrophinopathy in Hong Kong in 2010 is 1.03 per 10 000 males aged 0 to 24 years. Among the Duchenne group, we observed a higher percentage (40.6%) of point mutations with a lower percentage (45.3%) of exon deletions in our patients when compared with overseas studies. Although we observed similar percentage of Duchenne group received scoliosis surgery, ventilation support, and cardiac treatment when compared with other countries, the percentage (25%) of steroid use is lower.link_to_OA_fulltex

    Generation of the first BAC-based physical map of the common carp genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common carp (<it>Cyprinus carpio</it>), a member of Cyprinidae, is the third most important aquaculture species in the world with an annual global production of 3.4 million metric tons, accounting for nearly 14% of the all freshwater aquaculture production in the world. Apparently genomic resources are needed for this species in order to study its performance and production traits. In spite of much progress, no physical maps have been available for common carp. The objective of this project was to generate a BAC-based physical map using fluorescent restriction fingerprinting.</p> <p>Result</p> <p>The first generation of common carp physical map was constructed using four- color High Information Content Fingerprinting (HICF). A total of 72,158 BAC clones were analyzed that generated 67,493 valid fingerprints (5.5 × genome coverage). These BAC clones were assembled into 3,696 contigs with the average length of 476 kb and a N50 length of 688 kb, representing approximately 1.76 Gb of the common carp genome. The largest contig contained 171 BAC clones with the physical length of 3.12 Mb. There are 761 contigs longer than the N50, and these contigs should be the most useful resource for future integrations with linkage map and whole genome sequence assembly. The common carp physical map is available at <url>http://genomics.cafs.ac.cn/fpc/WebAGCoL/Carp/WebFPC/</url>.</p> <p>Conclusion</p> <p>The reported common carp physical map is the first physical map of the common carp genome. It should be a valuable genome resource facilitating whole genome sequence assembly and characterization of position-based genes important for aquaculture traits.</p

    Smart Work Injury Management (SWIM) system : a machine learning approach for the prediction of sick leave and rehabilitation plan

    No full text
    202403 bcvcVersion of RecordOthersInnovation and Technology CommissionPublishedC

    Testing strategies for genomic selection in aquaculture breeding programs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic selection is a selection method where effects of dense genetic markers are first estimated in a test population and later used to predict breeding values of selection candidates. The aim of this paper was to investigate genetic gains, inbreeding and the accuracy of selection in a general genomic selection scheme for aquaculture, where the test population consists of sibs of the candidates.</p> <p>Methods</p> <p>The selection scheme started after simulating 4000 generations in a Fisher-Wright population with a size of 1000 to create a founder population. The basic scheme had 3000 selection candidates, 3000 tested sibs of the candidates, 100 full-sib families, a trait heritability of 0.4 and a marker density of 0.5N<sub>e</sub>/M. Variants of this scheme were also analysed.</p> <p>Results</p> <p>The accuracy of selection in generation 5 was 0.823 for the basic scheme when the sib-testing was performed every generation. The accuracy was hardly reduced by selection, probably because the increased frequency of favourable alleles compensated for the Bulmer effect. When sib-testing was performed only in the first generation, in order to reduce costs, accuracy of selection in generation 5 dropped to 0.304, the main reduction occurring in the first generation. The genetic level in generation 5 was 6.35σ<sub>a </sub>when sib-testing was performed every generation, which was 72%, 12% and 9% higher than when sib-testing was performed only in the first generation, only in the first three generations or every second generation, respectively. A marker density above 0.5N<sub>e</sub>/M hardly increased accuracy of selection further. For the basic scheme, rates of inbreeding were reduced by 81% in these schemes compared to traditional selection schemes, due to within-family selection. Increasing the number of sibs to 6000 hardly affected the accuracy of selection, and increasing the number of candidates to 6000 increased genetic gain by 10%, mainly because of increased selection intensity.</p> <p>Conclusion</p> <p>Various strategies were evaluated to reduce the amount of sib-testing and genotyping, but all resulted in loss of selection accuracy and thus of genetic gain. Rates of inbreeding were reduced by 81% in genomic selection schemes compared to traditional selection schemes for the parameters of the basic scheme, due to within-family selection.</p
    corecore