19 research outputs found

    The effect of extreme confinement on the nonlinear-optical response of quantum wires

    Full text link
    This work focuses on understanding the nonlinear-optical response of a 1-D quantum wire embedded in 2-D space when quantum-size effects in the transverse direction are minimized using an extremely weighted delta function potential. Our aim is to establish the fundamental basis for understanding the effect of geometry on the nonlinear-optical response of quantum loops that are formed into a network of quantum wires. Using the concept of leaky quantum wires, it is shown that in the limit of full confinement, the sum rules are obeyed when the transverse infinite-energy continuum states are included. While the continuum states associated with the transverse wavefunction do not contribute to the nonlinear optical response, they are essential to preserving the validity of the sum rules. This work is a building block for future studies of nonlinear-optical enhancement of quantum graphs (which include loops and bent wires) based on their geometry. These properties are important in quantum mechanical modeling of any response function of quantum-confined systems, including the nonlinear-optical response of any system in which there is confinement in at leat one dimension, such as nanowires, which provide confinement in two dimensions

    Monte Carlo Studies of the Intrinsic Second Hyperpolarizability

    Full text link
    The hyperpolarizability has been extensively studied to identify universal properties when it is near the fundamental limit. Here, we employ the Monte Carlo method to study the fundamental limit of the second hyperpolarizability. As was found for the hyperpolarizability, the largest values of the second hyperpolarizability approaches the calculated fundamental limit. The character of transition moments and energies of the energy eigenstates are investigated near the second hyperpolarizability's upper bounds using the missing state analysis, which assesses the role of each pair of states in their contribution. In agreement with the three-level ansatz, our results indicate that only three states (ground and two excited states) dominate when the second hyperpolarizability is near the limit.Comment: 8 pages, 7 figure

    Geometry-Controlled Nonlinear Optical Response of Quantum Graphs

    Full text link
    We study for the first time the effect of the geometry of quantum wire networks on their nonlinear optical properties and show that for some geometries, the first hyperpolarizability is largely enhanced and the second hyperpolarizability is always negative or zero. We use a one-electron model with tight transverse confinement. In the limit of infinite transverse confinement, the transverse wavefunctions drop out of the hyperpolarizabilities, but their residual effects are essential to include in the sum rules. The effects of geometry are manifested in the projections of the transition moments of each wire segment onto the 2-D lab frame. Numerical optimization of the geometry of a loop leads to hyperpolarizabilities that rival the best chromophores. We suggest that a combination of geometry and quantum-confinement effects can lead to systems with ultralarge nonlinear response.Comment: To appear in J. Opt. Society of America

    From quantum wires to quantum loops: enhancement of nonlinear optical properties

    No full text
    We investigate a system of 1-D quantum wires confined to a plane, as building blocks of quantum loops, to study the role of geometry on their nonlinear optical (NLO) properties
    corecore