331 research outputs found

    Intramolecular integration within Moloney murine leukemia virus DNA

    Get PDF
    By screening a library of unintegrated, circular Moloney murine leukemia virus (M-MuLV) DNA cloned in lambda phage, we found that approximately 20% of the M-MuLV DNA inserts contained internal sequence deletions or inversions. Restriction enzyme mapping demonstrated tht the deleted segments frequently abutted a long terminal repeat (LTR) sequence, whereas the inverted segments were usually flanked by LTR sequences, suggesting that many of the variants arose as a consequence of M-MuLV DNA molecules integrating within their own DNA. Nucleotide sequencing also suggested that most of the variant inserts were generated by autointegration. One of the recombinant M-MuLV DNA inserts contained a large inverted repeat of a unique M-MuLV sequence abutting an LTR. This molecule was shown by nucleotide sequencing to have arisen by an M-MuLV DNA Molecule integrating within a second M-MuLV DNA molecule before cloning. The autointegrated M-MuLV DNA had generally lost two base pairs from the LTR sequence at each junction with target site DNA, whereas a four-base-pair direct repeat of target site DNA flanked the integrated viral DNA. Nucleotide sequencing of preintegration target site DNA showed that this four-base-pair direct repeat was present only once before integration and was thus reiterated by the integration event. The results obtained from the autointegrated clones were supported by nucleotide sequencing of the host-virus junction of two cloned M-MuLV integrated proviruses obtained from infected rat cells. Detailed analysis of the different unique target site sequences revealed no obvious common features

    To the editor

    Get PDF

    Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans

    Get PDF
    As a primary component of homeostasis, the sympathetic nervous system enables rapid adjustments to stress through its ability to communicate messages among organs and cause targeted and graded end organ responses. Key in this communication model is the pattern of neural signals emanating from the central to peripheral components of the sympathetic nervous system. But what is the communication strategy employed in peripheral sympathetic nerve activity (SNA)? Can we develop and interpret the system of coding in SNA that improves our understanding of the neural control of the circulation? In 1968, Hagbarth and Vallbo (Hagbarth KE, Vallbo AB. Acta Physiol Scand 74: 96–108, 1968) reported the first use of microneurographic methods to record sympathetic discharges in peripheral nerves of conscious humans, allowing quantification of SNA at rest and sympathetic responsiveness to physiological stressors in health and disease. This technique also has enabled a growing investigation into the coding patterns within, and cardiovascular outcomes associated with, postganglionic SNA. This review outlines how results obtained by microneurographic means have improved our understanding of SNA outflow patterns at the action potential level, focusing on SNA directed toward skeletal muscle in conscious humans

    Cerebrovascular compliance within the rigid confines of the skull

    Get PDF
    © 2018 Zamir, Moir, Klassen, Balestrini and Shoemaker. Pulsatile blood flow is generally mediated by the compliance of blood vessels whereby they distend locally and momentarily to accommodate the passage of the pressure wave. This freedom of the blood vessels to exercise their compliance may be suppressed within the confines of the rigid skull. The effect of this on the mechanics of pulsatile blood flow within the cerebral circulation is not known, and the situation is compounded by experimental access difficulties. We present an approach which we have developed to overcome these difficulties in a study of the mechanics of pulsatile cerebral blood flow. The main finding is that while the innate compliance of cerebral vessels is indeed suppressed within the confines of the skull, this is compensated somewhat by compliance provided by other extravascular elements within the skull. The net result is what we have termed intracranial compliance, which we argue is more pertinent to the mechanics of pulsatile cerebral blood flow than is intracranial pressure

    Knowledge-based annotation of small molecule binding sites in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of protein-small molecule interactions is vital for understanding protein function and for practical applications in drug discovery. To benefit from the rapidly increasing structural data, it is essential to improve the tools that enable large scale binding site prediction with greater emphasis on their biological validity.</p> <p>Results</p> <p>We have developed a new method for the annotation of protein-small molecule binding sites, using inference by homology, which allows us to extend annotation onto protein sequences without experimental data available. To ensure biological relevance of binding sites, our method clusters similar binding sites found in homologous protein structures based on their sequence and structure conservation. Binding sites which appear evolutionarily conserved among non-redundant sets of homologous proteins are given higher priority. After binding sites are clustered, position specific score matrices (PSSMs) are constructed from the corresponding binding site alignments. Together with other measures, the PSSMs are subsequently used to rank binding sites to assess how well they match the query and to better gauge their biological relevance. The method also facilitates a succinct and informative representation of observed and inferred binding sites from homologs with known three-dimensional structures, thereby providing the means to analyze conservation and diversity of binding modes. Furthermore, the chemical properties of small molecules bound to the inferred binding sites can be used as a starting point in small molecule virtual screening. The method was validated by comparison to other binding site prediction methods and to a collection of manually curated binding site annotations. We show that our method achieves a sensitivity of 72% at predicting biologically relevant binding sites and can accurately discriminate those sites that bind biological small molecules from non-biological ones.</p> <p>Conclusions</p> <p>A new algorithm has been developed to predict binding sites with high accuracy in terms of their biological validity. It also provides a common platform for function prediction, knowledge-based docking and for small molecule virtual screening. The method can be applied even for a query sequence without structure. The method is available at <url>http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi</url>.</p

    Regulation of cerebrovascular compliance compared with forearm vascular compliance in humans:a pharmacological study

    Get PDF
    Increasing evidence indicates that cerebrovascular compliance contributes to the dynamic regulation of cerebral blood flow but the mechanisms regulating cerebrovascular compliance in humans are unknown. This retrospective study investigated the impact of neural, endothelial, and myogenic mechanisms on the regulation of vascular compliance in the cerebral vascular bed compared with the forearm vascular bed. An index of vascular compliance (C(i)) was assessed using a Windkessel model applied to blood pressure waveforms (finger photoplethysmography) and corresponding middle cerebral artery blood velocity or brachial artery blood velocity waveforms (Doppler ultrasound). Data were analyzed during a 5-min baseline period (10 waveforms) under control conditions and during distinct sympathetic blockade (experiment 1, phentolamine; 10 adults), cholinergic blockade (experiment 2, glycopyrrolate; 9 adults), and myogenic blockade (experiment 3, nicardipine; 14 adults). In experiment 1, phentolamine increased C(i) similarly in the cerebral vascular bed (131 ± 135%) and forearm vascular bed (93 ± 75%; P = 0.45). In experiment 2, glycopyrrolate increased cerebrovascular C(i) (72 ± 61%) and forearm vascular C(i) (74 ± 64%) to a similar extent (P = 0.88). In experiment 3, nicardipine increased C(i) but to a greater extent in the cerebral vascular bed (88 ± 88%) than forearm vascular bed (20 ± 45%; P = 0.01). Therefore, adrenergic, cholinergic, and myogenic mechanisms contribute to the regulation of cerebrovascular and forearm vascular compliance. However, myogenic mechanisms appear to exert more specific control over vascular compliance in the brain relative to the forearm. NEW & NOTEWORTHY Vascular compliance represents an important determinant in the dynamics and regulation of blood flow through a vascular bed. However, the mechanisms that regulate vascular compliance remain poorly understood. This study examined the impact of neural, endothelial, and myogenic mechanisms on cerebrovascular compliance compared with forearm vascular compliance. Distinct pharmacological blockade of α-adrenergic, endothelial muscarinic, and myogenic inputs altered cerebrovascular and forearm vascular compliance. These results further our understanding of vascular control and blood flow regulation in the brain

    A 3000-year record of vegetation changes and fire at a high-elevation wetland on Kilimanjaro, Tanzania

    Get PDF
    Kilimanjaro is experiencing the consequences of climate change and multiple land-use pressures. Few paleoenvironmental and archeological records exist to examine historical patterns of late Holocene ecosystem changes on Kilimanjaro. Here we present pollen, phytolith, and charcoal (>125 ÎĽm) data from a palustrine sediment core that provide a 3000-year radiocarbon-dated record collected from a wetland near the headwaters of the Maua watershed in the alpine and ericaceous vegetation zones. From 3000 to 800 cal yr BP, the pollen, phytolith, and charcoal records show subtle variability in ericaceous and montane forest assemblages with apparent multicentennial secular variability and a long-term pattern of increasing Poaceae and charcoal. From 800 to 600 cal yr BP, montane forest taxa varied rapidly, Cyperaceae abundances increased, and charcoal remained distinctly low. From 600 yr cal BP to the present, woody taxa decreased, and ericaceous taxa and Poaceae dominated, with a conspicuously increased charcoal influx. Uphill wetland ecosystems are crucial for ecological and socioeconomic resilience on and surrounding the mountain. The results were synthesized with the existing paleoenvironmental and archaeological data to explore the high spatiotemporal complexity of Kilimanjaro and to understand historical human-environment interactions. These paleoenvironmental records create a long-term context for current climate, biodiversity, and land-use changes on and around Kilimanjaro

    Autonomic Dysregulation in Adolescent Concussion Is Sex- and Posture-Dependent

    Get PDF
    Objective: To study autonomic responses to postural changes in concussed adolescents. The influence of sex was also studied. Design: Longitudinal cohort observational study. Participants: Concussed adolescents (CONC; n = 65; 26 male adolescents; age 15 ± 1 years, range = 12-18 years) and a control (CTRL) group of nonconcussed adolescents of similar age and sport (CTRL; n = 54; 29 male adolescents; age 14 ± 1 years, range = 12-18 years). Interventions: Concussed participants were monitored through 6 weekly visits throughout usual physician care. Control participants underwent 2 visits separated by at least 1 week to account for intrapersonal variation in testing measures. Main Outcome Measures: Heart rate variability as the root mean square of successive differences in R–R intervals (RMSSD), heart rate (HR), and blood pressure [mean arterial pressure (MAP) and diastolic blood pressure (DBP)] were measured in supine, sitting, and standing postures. Results: A mixed analysis of variance revealed a group 3 sex 3 posture interaction (P = 0.04) where seated values of RMSSD were less in concussed female participants versus control female participants (42 ± 4 vs 61 ± 7 ms; P = 0.01; Mann–Whitney rank test). Compared with CTRL, CONC exhibited increased pretesting seated DBP (69 ± 1 vs 74 ± 1 mm Hg; P\u3c 0.01), MAP (83 ± 1 vs 86 ± 1 mm Hg; P = 0.02), and baseline seated HR (72 ± 1 vs 77 ± 2 bpm; P = 0.03). Values of DBP (P = 0.03) and MAP (P, 0.01) improved at clinical discharge, whereas the RMSSD in female participants did not (P \u3e 0.5). Data are mean ± SEM. Conclusions: A modest reduction in female cardiac autonomic regulation was observed during seated postures. Alterations in seated concussed DBP and MAP, but not RMSSD, resolved at clinical discharge (median = 37 days). The results indicate that, in adolescents, concussion may impair cardiovagal function in a sex- and posture-dependent manner. The findings also suggest that BP metrics, but not RMSSD, are associated with clinical concussion recovery
    • …
    corecore