19 research outputs found

    Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors

    Full text link
    [EN] BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d5/2) and Eu2+(3d3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f65d1 → 4f7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.The authors gratefully recognize the financial support from the University Grant Commission (UGC), New Delhi [MRP-40-73/2011(SR)] and the European Commission through Nano CIS project (FP7-PEOPLE-2010-IRSES ref. 269279).Singh, D.; Tanwar, V.; Simantilke, AP.; Marí, B.; Kadyan, PS.; Singh, I. (2016). Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors. Journal of Materials Science: Materials in Electronics. 27(3):2260-2266. https://doi.org/10.1007/s10854-015-4020-1S22602266273J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, S.I. Mho, G.C. Kim, Appl Phys Lett 84, 2931 (2004)D. Jia, D.N. Hunter, J Appl Phys 100, 1131251 (2006)H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, E. Toba, Rev Sci Instrum 74, 1344 (2003)C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, T. Watanabe, Appl Phys Lett 76, 179 (2000)C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Adv Funct Mater 13, 511 (2004)P.J. Saines, M.M. Elcombe, B.J. Kennedy, J Solid State Chem 179, 613 (2006)R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, J Lumin 85, 149 (1999)T. Aitasalo, P. Deren, J Solid State Chem 171, 114 (2003)S. Nakamura, T. Mukai, M. Senoh, J Appl Phys 76, 8189 (1994)S.H.M. Poort, G. Blasse, J Lumin 72, 247 (1997)P. Mingying, H. Guangyan, J Lumin 127, 735 (2007)X. Linjiu, H. Mingrui, T. Yanwen, C. Yongjie, K. Tomoaki, Z. Liqing, W. Ning, Jap J Applied Physics 46, 5871 (2007)T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, J Phys Chem B 110, 4589 (2006)R. Stefani, L.C.V. Rodrigues, C.A.A. Carvalho, M.C.F.C. Felinto, H.F. Brito, M. Lastusaari, J. Hölsä, Opt Mater 31, 1815 (2009)M. Peng, G. Hong, J Lumin 127, 735 (2007)V. Singh, V. Natarajan, J.J. Zhu, Opt Mater 29, 1447 (2007)X.Y. Chen, C. Ma, X.X. Li, C.W. Shi, X.L. Li, D.R. Lu, J Phys Chem C 113, 2685 (2009)A.J. Zarur, J.Y. Ying, Nature 403, 65 (2000)J. Chen, F. Gu, C. Li, Cry Growth Des 8, 3175 (2008)J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, L. Peng, Mater Res Bull 47, 247 (2012)P. Maślankiewicz, J. Szade, A. Winiarski, Ph Daniel, Cryst Res Technol 40, 410 (2005)Y.J. Chen, G.M. Qiu, Y.B. Sun et al., J Rare Earths 20, 50 (2002)F.C. Palilla, A.K. Levine, M.R. Tomkus, J Electrochem Soc 115, 642 (1968)J. Niittykoski, T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, M. Parkkinen, M. Tukia, J Alloys Compd 374, 108 (2004)A. Nag, T.R.N. Kutty, J Alloys Compd 354, 221 (2003)D. Haranath, P. Sharma, H. Chander, J Phys D Appl Phys 38, 371 (2005
    corecore