1,302 research outputs found

    Superconductivity without Local Inversion Symmetry; Multi-layer Systems

    Full text link
    While multi-layer systems can possess global inversion centers, they can have regions with locally broken inversion symmetry. This can modify the superconducting properties of such a system. Here we analyze two dimensional multi-layer systems yielding spatially modulated antisymmetric spin-orbit coupling (ASOC) and discuss superconductivity with mixed parity order parameters. In particular, the influence of ASOC on the spin susceptibility is investigated at zero temperature. For weak inter-layer coupling we find an enhanced spin susceptibility induced by ASOC, which hints the potential importance of this aspect for superconducting phase in specially structured superlattices.Comment: 4 pages, 2 figures, proceedings of the 26th International Conference on Low Temperature Physics (LT26

    Strong Coupling between Antiferromagnetic and Superconducting Order Parameters in CeRhIn5_5 Studied by In-NQR Spectroscopy

    Full text link
    We report on a novel pressure (PP)-induced evolution of magnetism and superconductivity (SC) in a helical magnet CeRhIn5_5 with an incommensurate wave vector Qi=(1/2,1/2,0.297)Q_i=({1/2},{1/2},0.297) through the 115^{115}In nuclear quadrupole resonance (NQR) measurements under PP. Systematic measurements of the 115^{115}In-NQR spectrum reveal that the commensurate antiferromagnetism (AFM) with Qc=(1/2,1/2,1/2)Q_c=({1/2},{1/2},{1/2}) is realized above PmP_m \sim 1.7 GPa. An important finding is that the size of SC gap and TcT_c increase as the magnitude of the AFM moment decreases in the PP region, where SC uniformly coexists with the commensurate AFM. This result provides evidence of strong coupling between the commensurate AFM order parameter (OP) and SC OP.Comment: 5 pages, 5 figure

    Novel phase diagram for antiferromagnetism and superconductivity in pressure-induced heavy-fermion superconductor Ce2_2RhIn8_8 probed by In-NQR

    Full text link
    We present a novel phase diagram for the antiferromagnetism and superconductivity in Ce2_2RhIn8_8 probed by In-NQR studies under pressure (PP). The quasi-2D character of antiferromagnetic spin fluctuations in the paramagnetic state at PP = 0 evolves into a 3D character because of the suppression of antiferromagnetic order for P>PQCPP > P_{\rm QCP}\sim 1.36 GPa (QCP: antiferromagnetic quantum critical point). Nuclear-spin-lattice-relaxation rate 1/T11/T_1 measurements revealed that the superconducting order occurs in the PP range 1.36 -- 1.84 GPa, with maximum TcT_c\sim 0.9 K around PQCPP_{\rm QCP}\sim 1.36 GPa.Comment: 5 pages, 5 figures, submitted to PR

    Strong suppression of superconductivity by divalent Ytterbium Kondo-holes in CeCoIn_5

    Full text link
    To study the nature of partially substituted Yb-ions in a Ce-based Kondo lattice, we fabricated high quality Ce_{1-x}Yb_xCoIn_5 epitaxial thin films using molecular beam epitaxy. We find that the Yb-substitution leads to a linear decrease of the unit cell volume, indicating that Yb-ions are divalent forming Kondo-holes in Ce_{1-x}Yb_xCoIn_5, and leads to a strong suppression of the superconductivity and Kondo coherence. These results, combined with the measurements of Hall effect, indicate that Yb-ions act as nonmagnetic impurity scatters in the coherent Kondo lattice without serious suppression of the antiferromagnetic fluctuations. These are in stark contrast to previous studies performed using bulk single crystals, which claim the importance of valence fluctuations of Yb-ions. The present work also highlights the suitability of epitaxial films in the study of the impurity effect on the Kondo lattice.Comment: 5 pages, 4 figure

    Swelling Properties of Water-Swelling Materials Exposed to Organic Water Pollution

    Get PDF
    A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed
    corecore