4 research outputs found
Recent sarcopenia definitions—prevalence, agreement and mortality associations among men: findings from population‐based cohorts
Background
The 2019 European Working Group on Sarcopenia in Older People (EWGSOP2) and the Sarcopenia Definitions and Outcomes Consortium (SDOC) have recently proposed sarcopenia definitions. However, comparisons of the performance of these approaches in terms of thresholds employed, concordance in individuals and prediction of important health-related outcomes such as death are limited. We addressed this in a large multinational assembly of cohort studies that included information on lean mass, muscle strength, physical performance and health outcomes.
Methods
White men from the Health Aging and Body Composition (Health ABC) Study, Osteoporotic Fractures in Men (MrOS) Study cohorts (Sweden, USA), the Hertfordshire Cohort Study (HCS) and the Sarcopenia and Physical impairment with advancing Age (SarcoPhAge) Study were analysed. Appendicular lean mass (ALM) was ascertained using DXA; muscle strength by grip dynamometry; and usual gait speed over courses of 2.4–6 m. Deaths were recorded and verified. Definitions of sarcopenia were as follows: EWGSOP2 (grip strength <27 kg and ALM index <7.0 kg/m2), SDOC (grip strength <35.5 kg and gait speed <0.8 m/s) and Modified SDOC (grip strength <35.5 kg and gait speed <1.0 m/s). Cohen's kappa statistic was used to assess agreement between original definitions (EWGSOP2 and SDOC). Presence versus absence of sarcopenia according to each definition in relation to mortality risk was examined using Cox regression with adjustment for age and weight; estimates were combined across cohorts using random-effects meta-analysis.
Results
Mean (SD) age of participants (n = 9170) was 74.3 (4.9) years; 5929 participants died during a mean (SD) follow-up of 12.1 (5.5) years. The proportion with sarcopenia according to each definition was EWGSOP2 (1.1%), SDOC (1.7%) and Modified SDOC (5.3%). Agreement was weak between EWGSOP2 and SDOC (κ = 0.17). Pooled hazard ratios (95% CI) for mortality for presence versus absence of each definition were EWGSOP2 [1.76 (1.42, 2.18), I2: 0.0%]; SDOC [2.75 (2.28, 3.31), I2: 0.0%]; and Modified SDOC [1.93 (1.54, 2.41), I2: 58.3%].
Conclusions
There was low prevalence and poor agreement among recent sarcopenia definitions in community-dwelling cohorts of older white men. All indices of sarcopenia were associated with mortality. The strong relationship between sarcopenia and mortality, regardless of the definition, illustrates that identification of appropriate management and lifecourse intervention strategies for this condition is of paramount importance
A saturated map of common genetic variants associated with human height.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes <sup>1</sup> . Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel <sup>2</sup> ) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries