426 research outputs found

    Mitochondrial decay in aging

    Get PDF
    AbstractSeveral mitochondrial functions decline with age. The contributing factors include, the intrinsic rate of proton leakage across the inner mitochondrial membrane (a correlate of oxidant formation), decreased membrane fluidity, and decreased levels and function of cardiolipin, which supports the function of many of the proteins of the inner mitochondrial membrane. Oxidants generated by mitochondria appear to be the major source of the oxidative lesions that accumulate with age. Evidence supports the suggestion that age-associated accumulation of mitochondrial deficits due to oxidative damage is likely to be a major contributor to cellular, tissue, and organismal aging

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community

    Occipital nerve block is effective in craniofacial neuralgias but not in idiopathic persistent facial pain

    Get PDF
    Occipital nerve block (ONB) has been used in several primary headache syndromes with good results. Information on its effects in facial pain is sparse. In this chart review, the efficacy of ONB using lidocaine and dexamethasone was evaluated in 20 patients with craniofacial pain syndromes comprising 8 patients with trigeminal neuralgia, 6 with trigeminal neuropathic pain, 5 with persistent idiopathic facial pain and 1 with occipital neuralgia. Response was defined as an at least 50% reduction of original pain. Mean response rate was 55% with greatest efficacy in trigeminal (75%) and occipital neuralgia (100%) and less efficacy in trigeminal neuropathic pain (50%) and persistent idiopathic facial pain (20%). The effects lasted for an average of 27 days with sustained benefits for 69, 77 and 107 days in three patients. Side effects were reported in 50%, albeit transient and mild in nature. ONBs are effective in trigeminal pain involving the second and third branch and seem to be most effective in craniofacial neuralgias. They should be considered in facial pain before more invasive approaches, such as thermocoagulation or vascular decompression, are performed, given that side effects are mild and the procedure is minimally invasive

    Mitochondria-Specific Accumulation of Amyloid β Induces Mitochondrial Dysfunction Leading to Apoptotic Cell Death

    Get PDF
    Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimer's disease (AD). Amyloid β (Aβ) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to Aβ impairs mitochondrial dynamics and function. Furthermore, mitochondrial Aβ accumulation has been detected in the AD brain. However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial Aβ accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous Aβ1–42 treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous Aβ1–42-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of Aβ1–42 in HT22 cells using Aβ1–42 with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous Aβ1–42-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific Aβ1–42 accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous Aβ1–42-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted Aβ1–42 accumulation, which mimics the apoptosis process in exogenous Aβ1–42-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted Aβ1–42 accumulation is the necessary and sufficient condition for Aβ-mediated mitochondria impairments, and leads directly to cellular death rather than along with other Aβ-mediated signaling alterations

    Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C

    Get PDF
    Although the oxidative stress frequently occurs in patients with chronic hepatitis C, its role in future hepatocellular carcinoma (HCC) development is unknown. Hepatic 8-hydroxydeoxyguanosine (8-OHdG) was quantified using liver biopsy samples from 118 naïve patients who underwent liver biopsy from 1995 to 2001. The predictability of 8-OHdG for future HCC development and its relations to epidemiologic, biochemical and histological baseline characteristics were evaluated. During the follow-up period (mean was 6.7±3.3 years), HCC was identified in 36 patients (30.5%). Univariate analysis revealed that 16 variables, including 8-OHdG counts (65.2±20.2 vs 40.0±23.5 cells per 105 μm2, P<0.0001), were significantly different between patients with and without HCC. Cox proportional hazard analysis showed that the hepatic 8-OHdG (P=0.0058) and fibrosis (P=0.0181) were independent predicting factors of HCC. Remarkably, 8-OHdG levels were positively correlated with body and hepatic iron storage markers (vs ferritin, P<0.0001 vs hepatic iron score, P<0.0001). This study showed that oxidative DNA damage is associated with increased risk for HCC and hepatic 8-OHdG levels are useful as markers to identify the extreme high-risk subgroup. The strong correlation between hepatic DNA damage and iron overload suggests that the iron content may be a strong mediator of oxidative stress and iron reduction may reduce HCC incidence in patients with chronic hepatitis C

    Hepatitis C virus to hepatocellular carcinoma

    Get PDF
    Hepatitis C virus causes acute and chronic hepatitis and can lead to permanent liver damage and hepatocellular carcinoma (HCC) in a significant number of patients via oxidative stress, insulin resistance (IR), fibrosis, liver cirrhosis and HCV induced steatosis. HCV induced steatosis and oxidative stress causes steato-hepatitis and these pathways lead to liver injury or HCC in chronic HCV infection. Steatosis and oxidative stress crosstalk play an important role in liver damage in HCV infection. This Review illustrates viral and host factors which induce Oxidative stress, steatosis and leads toward HCC. It also expresses Molecular cascade which leads oxidative stress and steatosis to HCC

    Mitochondrial Dysfunction and Apoptosis in Cumulus Cells of Type I Diabetic Mice

    Get PDF
    Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females

    Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease

    Get PDF
    It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration
    corecore