2,247 research outputs found
Polaronic transport induced by competing interfacial magnetic order in a LaCaMnO/BiFeO heterostructure
Using ultrafast optical spectroscopy, we show that polaronic behavior
associated with interfacial antiferromagnetic order is likely the origin of
tunable magnetotransport upon switching the ferroelectric polarity in a
LaCaMnO/BiFeO (LCMO/BFO) heterostructure. This is
revealed through the difference in dynamic spectral weight transfer between
LCMO and LCMO/BFO at low temperatures, which indicates that transport in
LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases
in relatively high magnetic fields due to the increased spin alignment, while
no discernible change is found in the LCMO film at low temperatures. These
results thus shed new light on the intrinsic mechanisms governing
magnetoelectric coupling in this heterostructure, potentially offering a new
route to enhancing multiferroic functionality
The first products made in space: Monodisperse latex particles
The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles
Quantum planes and quantum cylinders from Poisson homogeneous spaces
Quantum planes and a new quantum cylinder are obtained as quantization of
Poisson homogeneous spaces of two different Poisson structures on classical
Euclidean group E(2).Comment: 13 pages, plain Tex, no figure
Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor
The band structure of a prototypical dilute ferromagnetic semiconductor,
GaMnAs, is studied across the phase diagram via optical
spectroscopy. We prove that the Fermi energy () resides in a Mn induced
impurity band (IB). This conclusion is based upon careful analysis of the
frequency and temperature dependence of the optical conductivity
(). From our analysis of we infer
a large effective mass () of the carriers, supporting the view that
conduction occurs in an IB. Our results also provide useful insights into the
transport properties of Mn-doped GaAs.Comment: 4 pages, 4 figure
Imaging nonequilibrium atomic vibrations with x-ray diffuse scattering
For over a century, x-ray scattering has been the most powerful tool for
determining the equilibrium structure of crystalline materials. Deviations from
perfect periodicity, for example due to thermal motion of the atoms, reduces
the intensity of the Bragg peaks as well as produces structure in the diffuse
scattering background. Analysis of the thermal diffuse scattering (TDS) had
been used to determine interatomic force constants and phonon dispersion in
relatively simple cases before inelastic neutron scattering became the
preferred technique to study lattice dynamics. With the advent of intense
synchrotron x-ray sources, there was a renewed interest in TDS for measuring
phonon dispersion. The relatively short x-ray pulses emanating from these
sources also enables the measurement of phonon dynamics in the time domain.
Prior experiments on nonequilibrium phonons were either limited by
time-resolution and/or to relatively long wavelength excitations. Here we
present the first images of nonequilibrium phonons throughout the Brillouin
zone in photoexcited III-V semiconductors, indium-phosphide and
indium-antimonide, using picosecond time-resolved diffuse scattering. In each
case, we find that the lattice remain out of equilibrium for several hundred
picoseconds up to nanoseconds after laser excitation. The non-equilibrium
population is dominated by transverse acoustic phonons which in InP are
directed along high-symmetry directions. The results have wide implications for
the detailed study of electron-phonon and phonon-phonon coupling in solids.Comment: 10 pages, 3 figure
Flux through a hole from a shaken granular medium
We have measured the flux of grains from a hole in the bottom of a shaken
container of grains. We find that the peak velocity of the vibration, vmax,
controls the flux, i.e., the flux is nearly independent of the frequency and
acceleration amplitude for a given value of vmax. The flux decreases with
increasing peak velocity and then becomes almost constant for the largest
values of vmax. The data at low peak velocity can be quantitatively described
by a simple model, but the crossover to nearly constant flux at larger peak
velocity suggests a regime in which the granular density near the container
bottom is independent of the energy input to the system.Comment: 14 pages, 4 figures. to appear in Physical Review
An Empirical Charge Transfer Potential with Correct Dissociation Limits
The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has
always embodied charge transfer processes. The mechanism of that behavior is
examined here and recast for use as a new empirical potential energy surface
for large-scale simulations. A two-state model is explored. The main features
of the model are: (1) Explicit decomposition of the total system electron
density is invoked; (2) The charge is defined through the density decomposition
into constituent contributions; (3) The charge transfer behavior is controlled
through the resonance energy matrix elements which cannot be ignored; and (4) A
reference-state approach, similar in spirit to the EVB method, is used to
define the resonance state energy contributions in terms of "knowable"
quantities. With equal validity, the new potential energy can be expressed as a
nonthermal ensemble average with a nonlinear but analytical charge dependence
in the occupation number. Dissociation to neutral species for a gas-phase
process is preserved. A variant of constrained search density functional theory
is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure
- …