41 research outputs found

    Receptor–ligand pair typing and prognostic risk model of response or resistance to immune checkpoint inhibitors in lung adenocarcinoma

    Get PDF
    IntroductionCurrently, programmed cell death-1 (PD-1)-targeted treatment is ineffective for a sizable minority of patients, and drug resistance still cannot be overcome.MethodsTo explore the mechanisms of immunotherapy and identify new therapeutic opportunities in lung adenocarcinoma (LUAD), data from patients who did and did not respond to the anti-PD-1 treatment were evaluated using single-cell RNA sequencing, and bulk RNA sequencing were collected.ResultsWe investigated the gene expression that respond or not respond to immunotherapy in diverse cell types and revealed transcriptional characteristics at the single-cell level. To ultimately explore the molecular response or resistance to anti-PD-1 therapy, cell-cell interactions were carried out to identify the different LRIs (ligand-receptor interactions) between untreated patients vs. no-responders, untreated patients vs. responders, and responders vs. non-responders. Next, two molecular subgroups were proposed based on 73 LRI genes, and subtype 1 had a poor survival status and was likely to be the immunosuppressive tumor subtype. Furthermore, based on the LASSO Cox regression analysis results, we found that TNFSF13, AXL, KLRK1, FAS, PROS1, and CDH1 can be distinct prognostic biomarkers, immune infiltration levels, and responses to immunotherapy in LUAD.DiscussionAltogether, the effects of immunotherapy were connected to LRIs scores, indicating that potential medications targeting these LRIs could contribute to the clinical benefit of immunotherapy. Our integrative omics analysis revealed the mechanisms underlying the anti-PD-1 therapy response and offered abundant clues for potential strategies to improve precise diagnosis and immunotherapy

    Solitary Wave, Periodic Cusp Wave and Compactons of the (2+1)-Dimensional KP-Like K(m,n) Equation

    No full text
    By using the bifurcation theory of dynamical systems to the generalized KP equation, under different parametric conditions, various sufficient conditions to guarantee the existence of the solitary wave solutions, periodic cusp wave solutions and compactons solutions are given. Some exact explicit parametric representations of the above waves are determined

    Application of ALD-Al<sub>2</sub>O<sub>3</sub> in CdS/CdTe Thin-Film Solar Cells

    No full text
    The application of thinner cadmium sulfide (CdS) window layer is a feasible approach to improve the performance of cadmium telluride (CdTe) thin film solar cells. However, the reduction of compactness and continuity of thinner CdS always deteriorates the device performance. In this work, transparent Al2O3 films with different thicknesses, deposited by using atomic layer deposition (ALD), were utilized as buffer layers between the front electrode transparent conductive oxide (TCO) and CdS layers to solve this problem, and then, thin-film solar cells with a structure of TCO/Al2O3/CdS/CdTe/BC/Ni were fabricated. The characteristics of the ALD-Al2O3 films were studied by UV&#8211;visible transmittance spectrum, Raman spectroscopy, and atomic force microscopy (AFM). The light and dark J&#8211;V performances of solar cells were also measured by specific instrumentations. The transmittance measurement conducted on the TCO/Al2O3 films verified that the transmittance of TCO/Al2O3 were comparable to that of single TCO layer, meaning that no extra absorption loss occurred when Al2O3 buffer layers were introduced into cells. Furthermore, due to the advantages of the ALD method, the ALD-Al2O3 buffer layers formed an extremely continuous and uniform coverage on the substrates to effectively fill and block the tiny leakage channels in CdS/CdTe polycrystalline films and improve the characteristics of the interface between TCO and CdS. However, as the thickness of alumina increased, the negative effects of cells were gradually exposed, especially the increase of the series resistance (Rs) and the more serious &#8220;roll-over&#8222; phenomenon. Finally, the cell conversion efficiency (&#951;) of more than 13.0% accompanied by optimized uniformity performances was successfully achieved corresponding to the 10 nm thick ALD-Al2O3 thin film

    Production of 2,5-Diformylfuran from Biomass-derived Glucose via One-Pot Two-Step Process

    No full text
    As a furan derivative from 5-hydroxymethylfurfural (HMF) or other biomass-based carbohydrates, 2,5-diformylfuran (DFF) is one of the most important platform molecules in the organic chemicals industry. Although it has many potential applications in the future, the production of DFF on a large scale is currently a challenge. As an alternative to the production of DFF from HMF, the target product DFF could be obtained from biomass-derived glucose with a complex catalytic system (AlCl3•6H2O/NaBr and a vanadium compound assisted with molecular oxygen) carried out in N,N-dimethylformamide (DMF). In this research, reactions were conducted in reactors with different capacities. The results showed that DFF yields based on glucose could reach 35 to 48% with almost complete transformation of glucose. This one-pot two-step reaction is characterized by the abundance and low cost of the starting materials and by the elimination of the separation and purification of HMF. This has great potential for applications in the future production of DFF on a large scale after further advancements and optimizations
    corecore