90 research outputs found
Recommended from our members
Controllable Laser Ion Acceleration
In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction
Simulating Poynting Flux Acceleration in the Laboratory with Colliding Laser Pulses
We review recent PIC simulation results which show that double-sided
irradiation of a thin over-dense plasma slab with ultra-intense laser pulses
from both sides can lead to sustained comoving Poynting flux acceleration of
electrons to energies much higher than the conventional ponderomotive limit.
The result is a robust power-law electron momentum spectrum similar to
astrophysical sources. We discuss future ultra-intense laser experiments that
may be used to simulate astrophysical particle acceleration.Comment: Paper accepted for publication in the Astrophysics and Space Science,
Volume for HEDLA06 conference proceedings, edited by G. Kyrala, in pres
Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the Marine Alga Sargassum sp. in single- And multiple-metal systems
10.1021/ie0615786Industrial and Engineering Chemistry Research4682438-2444IECR
Biosorption of copper by immobilized marine algal biomass
10.1016/j.cej.2007.03.033Chemical Engineering Journal1362-3156-163CMEJ
Biosorption performace of two brown marine algae for removal of chromium and cadmium
10.1081/DIS-200027327Journal of Dispersion Science and Technology255679-68
Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms
Journal of Colloid and Interface Science2751131-141JCIS
Efficient ion generation in laser-foil interaction
A remarkable improvement is presented on the energy conversion efficiency from laser to protons in a laser-foil interaction by particle simulations. The total laser-proton energy conversion efficiency from laser to protons becomes 16.7%, though a conventional plane foil target serves a rather low efficiency. In our 2.5-dimensional particle-in-cell simulations the Al multihole structure is also employed, and the laser absorption ratio reaches 71.2%. The main physical reason for the enhancement of the conversion efficiency is a reduction of the laser reflection at the target surface area
Laser-plasma booster for ion post acceleration
A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV
Efficient ion generation in laser-foil interaction
A remarkable improvement is presented on the energy conversion efficiency from laser to protons in a laser-foil interaction by particle simulations. The total laser-proton energy conversion efficiency from laser to protons becomes 16.7%, though a conventional plane foil target serves a rather low efficiency. In our 2.5-dimensional particle-in-cell simulations the Al multihole structure is also employed, and the laser absorption ratio reaches 71.2%. The main physical reason for the enhancement of the conversion efficiency is a reduction of the laser reflection at the target surface area
- …