56 research outputs found

    Parity Nonconservation in Neutron Resonances in 133Cs

    Full text link
    Spatial parity nonconservation (PNC) has been studied in the compound-nuclear states of 134Cs by measuring the helicity dependence of the neutron total cross section. Transmission measurements on a thick 133Cs target were performed by the time-of-flight method at the Manuel Lujan Neutron Scattering Center with a longitudinally polarized neutron beam in the energy range from 5 to 400 eV. A total of 28 new p-wave resonances were found, their neutron widths determined, and the PNC longitudinal asymmetries of the resonance cross sections measured. The value obtained for the root-mean-square PNC element M=(0.06-0.02+0.25) meV in 133Cs is the smallest among all targets studied. This value corresponds to a weak spreading width Γw=(0.006-0.003+0.154)×10-7 eV

    Precision Measurement of PArity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment

    Full text link
    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the γ\gamma emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon (πNN\pi NN) coupling constant {\it fπ1^1_{\pi}}Comment: Proceedings of the PANIC'05 Conference, Santa Fe, NM, USA, October 24-28, 2005, 3 pages, 2 figure

    Quantum phase transitions from topology in momentum space

    Full text link
    Many quantum condensed matter systems are strongly correlated and strongly interacting fermionic systems, which cannot be treated perturbatively. However, physics which emerges in the low-energy corner does not depend on the complicated details of the system and is relatively simple. It is determined by the nodes in the fermionic spectrum, which are protected by topology in momentum space (in some cases, in combination with the vacuum symmetry). Close to the nodes the behavior of the system becomes universal; and the universality classes are determined by the toplogical invariants in momentum space. When one changes the parameters of the system, the transitions are expected to occur between the vacua with the same symmetry but which belong to different universality classes. Different types of quantum phase transitions governed by topology in momentum space are discussed in this Chapter. They involve Fermi surfaces, Fermi points, Fermi lines, and also the topological transitions between the fully gapped states. The consideration based on the momentum space topology of the Green's function is general and is applicable to the vacua of relativistic quantum fields. This is illustrated by the possible quantum phase transition governed by topology of nodes in the spectrum of elementary particles of Standard Model.Comment: 45 pages, 17 figures, 83 references, Chapter for the book "Quantum Simulations via Analogues: From Phase Transitions to Black Holes", to appear in Springer lecture notes in physics (LNP

    Spins of Resonances in Reactions of Neutrons with 238-U and 113-Cd.

    No full text
    Abstract not availableJRC.D-Institute for Reference Materials and Measurements (Geel
    corecore