31,810 research outputs found

    High-energy neutrinos from a lunar observatory

    Get PDF
    The detection of high-energy (HE) cosmic and solar-flare neutrions near the lunar surface would be feasible at energies much lower than for a terrestrial observatory. At these lower energies ( 10 to the 9th eV), the neutrino background is drastically reduced below that generated by cosmic rays in the Earth's atmosphere. Because of the short mean free path ( 1m) of the progenitor pi and K mesons against nuclear interactions in lunar rocks, the neutrino background would be quite low. At 1 GeV, less than 1% of the pions would decay; at 10 GeV, 0.1%. Thus, if the neutrino flux to be observed is intense enough, and its spectrum is steep enough, then the signal-to-noise ratio is very favorable. The observation of HE neutrinos from solar flares would be dramatically enhanced, especially at lower energies, since the flare spectra are very steep. Detection of these neutrinos on Earth does not appear to be feasible. A remarkable feature of solar flares as viewed in HE neutrinos from a lunar base is that the entire surface of the Sun would be visible

    Overlapping Resonances Interference-induced Transparency: The S0S2/S1S_0 \to S_2/S_1 Photoexcitation Spectrum of Pyrazine

    Full text link
    The phenomenon of "overlapping resonances interference-induced transparency" (ORIT) is introduced and studied in detail for the S0S2/S1S_0 \to S_2/S_1 photoexcitation of cold pyrazine (C4_4H4_4N2_2). In ORIT a molecule becomes transparent at specific wavelengths due to interferences between envelopes of spectral lines displaying overlapping resonances. An example is the S2S1S_2\leftrightarrow S_1 internal conversion in pyrazine where destructive interference between overlapping resonances causes the S0S2/S1S_0 \to S_2/S_1 light absorption to disappear at certain wavelengths. ORIT may be of practical importance in multi-component mixtures where it would allow for the selective excitation of some molecules in preference to others. Interference induced cross section enhancement is also shown.Comment: 13 pages, 7 figure

    Laser-induced currents along molecular wire junctions

    Full text link
    The treatment of the previous paper is extended to molecular wires. Specifically, the effect of electron-vibrational interactions on the electronic transport induced by femtosecond ω+2ω\omega+2\omega laser fields along unbiased molecular nanojunctions is investigated. For this, the photoinduced vibronic dynamics of trans-polyacetylene oligomers coupled to macroscopic metallic leads is followed in a mean-field mixed quantum-classical approximation. A reduced description of the dynamics is obtained by introducing projective lead-molecule couplings and deriving an effective Schr\"odinger equation satisfied by the orbitals in the molecular region. Two possible rectification mechanisms are identified and investigated. The first one relies on near-resonance photon-absorption and is shown to be fragile to the ultrafast electronic decoherence processes introduced by the wire's vibrations. The second one employs the dynamic Stark effect and is demonstrated to be highly efficient and robust to electron-vibrational interactions.Comment: 14 pages, 10 figures. Accepted in J. Chem. Phy

    Observability of the neutrino flux from the inner region of the galactic disk

    Get PDF
    The observability of galactic neutrinos in a detector of 10 billion tons of water with an observing time of a few years is explored. Although the atmospheric flux exceeds the galactic flux considerably at energies greater than or equal to 1 TeV, the latter may still provide a marginally observable signal owing to its directionality. Galactic muon neutrinos with energy greater than or equal to 1 TeV will produce a signal approximately 2 sigma above the atmospheric background over a four year period. If electron neutrinos can also be studied with the deep underwater muon and neutrino detector, then galactic electron neutrinos above 1 TeV would give an approximate 4 to 5 sigma signal above the electron neutrino background over a four year integration time

    Propagation of cosmic rays and new evidence for distributed acceleration

    Get PDF
    The origin and propagation of cosmic rays in terms of conventional and supplementary newer assumptions were explored. Cosmic rays are considered to be accelerated by supernoava shock waves and to traverse clouds in the source region. After rigidity-dependent escape from these clouds into interstellar space, cosmic rays are further accelerated by the weakened shocks of old supernova remnants and then pass through additional material. The distributed acceleration hypothesis is discussed with emphasis on recent data on the abundances of cosmic-ray isotopes of N above 1 GeV/u and of He near 6 GeV/u

    Overlapping resonances in the control of intramolecular vibrational redistribution

    Get PDF
    Coherent control of bound state processes via the interfering overlapping resonances scenario [Christopher et al., J. Chem. Phys. 123, 064313 (2006)] is developed to control intramolecular vibrational redistribution (IVR). The approach is applied to the flow of population between bonds in a model of chaotic OCS vibrational dynamics, showing the ability to significantly alter the extent and rate of IVR by varying quantum interference contributions.Comment: 10 pages, 7 figure

    Generic Quantum Ratchet Accelerator with Full Classical Chaos

    Get PDF
    A simple model of quantum ratchet transport that can generate unbounded linear acceleration of the quantum ratchet current is proposed, with the underlying classical dynamics fully chaotic. The results demonstrate that generic acceleration of quantum ratchet transport can occur with any type of classical phase space structure. The quantum ratchet transport with full classical chaos is also shown to be very robust to noise due to the large linear acceleration afforded by the quantum dynamics. One possible experiment allowing observation of these predictions is suggested.Comment: 4 pages, 4 figure

    Optical properties of current carrying molecular wires

    Full text link
    We consider several fundamental optical phenomena involving single molecules in biased metal-molecule-metal junctions. The molecule is represented by its highest occupied and lowest unoccupied molecular orbitals, and the analysis involves the simultaneous consideration of three coupled fluxes: the electronic current through the molecule, energy flow between the molecule and electron-hole excitations in the leads and the incident and/or emitted photon flux. Using a unified theoretical approach based on the non-equilibrium Green function method we derive expressions for the absorption lineshape (not an observable but a ueful reference for considering yields of other optical processes) and for the current induced molecular emission in such junctions. We also consider conditions under which resonance radiation can induce electronic current in an unbiased junction. We find that current driven molecular emission and resonant light induced electronic currents in single molecule junctions can be of observable magnitude under appropriate realizable conditions. In particular, light induced current should be observed in junctions involving molecular bridges that are characterized by strong charge transfer optical transitions. For observing current induced molecular emission we find that in addition to the familiar need to control the damping of molecular excitations into the metal substrate the phenomenon is also sensitive to the way in which the potential bias si distributed on the junction.Comment: 56 pages, 8 figures; submitted to JC
    corecore