368 research outputs found

    First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys

    Full text link
    We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x (BS-PT) alloys recently proposed by Eitel et al. as promising materials for piezoelectric actuator applications. We show that (i) BS-PT displays very large structural distortions and polarizations at the morphotropic phase boundary (MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the ferroelectric and piezoelectric properties of BS-PT are dominated by the onset of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as far as the computed values of the piezoelectric coefficient d_15 are concerned. While our results are generally consistent with experiment, they also suggest that certain intrinsic properties of BS-PT may be even better than has been indicated by experiments to date. We also discuss results for PZT that demonstrate the prominent role played by Pb displacements in its piezoelectric properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm

    Phase control of La2CuO4 in thin-film synthesis

    Full text link
    The lanthanum copper oxide, La2CuO4, which is an end member of the prototype high-Tc superconductors (La,Sr)2CuO4 and (La,Ba)2CuO4, crystallizes in the "K2NiF4" structure in high-temperature bulk synthesis. The crystal chemistry, however, predicts that La2CuO4 is at the borderline of the K2NiF4 stability and that it can crystallize in the Nd2CuO4 structure at low synthesis temperatures. In this article we demonstrate that low-temperature thin-film synthesis actually crystallizes La2CuO4 in the Nd2CuO4 structure. We also show that the phase control of "K2NiF4"-type La2CuO4 versus "Nd2CuO4"-type La2CuO4 can be achieved by varying the synthesis temperature and using different substrates.Comment: 4 pages, 5 figures, submitted to PRB, revte

    Lattice dielectric response of CdCu{3}Ti{4}O{12} and of CaCu{3}Ti{4}O{12} from first principles

    Full text link
    Structural, vibrational, and lattice dielectric properties of CdCu{3}Ti{4}O{12} are studied using density-functional theory within the local spin-density approximation, and the results are compared with those computed previously for CaCu{3}Ti{4}O{12}. Replacing Ca with Cd is found to leave many calculated quantities largely unaltered, although significant differences do emerge in zone-center optical phonon frequencies and mode effective charges. The computed phonon frequencies of CdCu{3}Ti{4}O{12} are found to be in excellent agreement with experiment, and the computed lattice contribution to the intrinsic static dielectric constant (~60) also agrees exceptionally well with a recent optical absorption experiment. These results provide further support for a picture in which the lattice dielectric response is essentially conventional, suggesting an extrinsic origin for the anomalous low-frequency dielectric response recently observed in both materials.Comment: 5 pages; uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_cdct/index.htm

    On testing global optimization algorithms for space trajectory design

    Get PDF
    In this paper we discuss the procedures to test a global search algorithm applied to a space trajectory design problem. Then, we present some performance indexes that can be used to evaluate the effectiveness of global optimization algorithms. The performance indexes are then compared highlighting the actual significance of each one of them. A number of global optimization algorithms are tested on four typical space trajectory design problems. From the results of the proposed testing procedure we infer for each pair algorithm-problem the relation between the heuristics implemented in the solution algorithm and the main characteristics of the problem under investigation. From this analysis we derive a novel interpretation of some evolutionary heuristics, based on dynamical system theory and we significantly improve the performance of one of the tested algorithms

    Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland

    Get PDF
    The δ13C value of pore water methane produced in a Michigan peatland varied by 11% during the year. This isotopic shift resulted from large seasonal changes in the pathways of methane production. On the basis of mass balance calculations, the δ13C value of methane from CO2 reduction (average =-71.4 ± 1.8%) was depleted in 13C compared to that produced from acetate (-44.4 ± 8.2%o). The dissolved methane at the site remained heavy (approximately-51%o) during most of the year. Tracer experiments using 14C-labeled CO2 indicated that during January 110 ± 25% of the methane was produced by CO2 reduction. Because of low-methane production rates during the winter, this C-depleted methane had only a slight effect on the isotopic composition of the methane pool. In early spring when peat temperatures and methane production rates increased, the δ13C value of the dissolved methane in shallow peat was influenced by the isotopically light methane and approached-61‰. Peat incubation experiments conducted at 15°C in May and June (when the peat reaches its maximum temperature) indicated that an average of 84 ± 9% of the methane production was from acetate and had an average δ13C value of-48.7 ± 5.6‰. Rising acetate concentrations during April-May (approaching 1 mmol L-1(mM)) followed by a rapid decrease in acetate concentrations during May-June reflected the shift toward methane production dominated by acetate fermentation. During this period, dissolved methane in shallow peat at the site returned to heavier values (approximately-5 l%o) similar to that produced in the incubation experiments

    Effect of band-filling and structural distortions on the Curie temperature of Fe-Mo double perovkites

    Full text link
    By means of high resolution neutron powder diffraction at low temperature we have characterized the structural details of LaxSr2xFeMoO6\rm La_{x}Sr_{2-x}FeMoO_6 (0x0.50\leq {\rm x}\leq 0.5) and CaxSr2xFeMoO6\rm Ca_{x}Sr_{2-x}FeMoO_6 (0x0.60\leq {\rm x}\leq 0.6) series of compounds. This study reveals a similar variation of the mean bond-angle \FeOMo in both series. In contrast, the mean bond-distance \FeMoO\ increases with La but not with Ca substitution. Both series also present a different evolution of the Curie temperature (TCT_C), which raises in the La series and slightly decreases in the Ca one. We thus conclude that the enhancement of TCT_C in the La series is due to the electron filling of the conduction band and a concomitant rising of the density of states at the Fermi level.Comment: Revtex, 4 Journal pages, 2 figures, 1 tabl

    Electronic structure study of double perovskites A2A_{2}FeReO6_{6} (A=Ba,Sr,Ca) and Sr2M_{2}MMoO6_{6} (M=Cr,Mn,Fe,Co) by LSDA and LSDA+U

    Full text link
    We have implemented a systematic LSDA and LSDA+U study of the double perovskites A2A_{2}FeReO6_{6} (A=Ba,Sr,Ca) and Sr2_{2}MMMoO6_{6} (M=Cr,Mn,Fe,Co) for understanding of their intriguing electronic and magnetic properties. The results suggest a ferrimagnetic (FiM) and half-metallic (HM) state of A2A_{2}FeReO6_{6} (A=Ba,Sr) due to a pdd-π\pi coupling between the down-spin Re5+^{5+}/Fe3+^{3+} t2gt_{2g} orbitals via the intermediate O 2pπ2p_{\pi} ones, also a very similar FiM and HM state of Sr2_{2}FeMoO6_{6}. In contrast, a decreasing Fe t2gt_{2g} component at Fermi level (EFE_{F}) in the distorted Ca2_{2}FeReO6_{6} partly accounts for its nonmetallic behavior, while a finite pddpdd-σ\sigma coupling between the down-spin Re5+^{5+}/Fe3+^{3+} ege_{g} orbitals being present at EFE_{F} serves to stabilize its FiM state. For Sr2_{2}CrMoO6_{6} compared with Sr2_{2}FeMoO6_{6}, the coupling between the down-spin Mo5+^{5+}/Cr3+^{3+} t2gt_{2g} orbitals decreases as a noticeable shift up of the Cr3+^{3+} 3d levels, which is likely responsible for the decreasing TCT_{C} value and weak conductivity. Moreover, the calculated level distributions indicate a Mn2+^{2+}(Co2+^{2+})/Mo6+^{6+} ionic state in Sr2_{2}MnMoO6_{6} (Sr2_{2}CoMoO6_{6}), in terms of which their antiferromagnetic insulating ground state can be interpreted. While orbital population analyses show that owing to strong intrinsic pd covalence effects, Sr2M_{2}MMoO6_{6} (M=Cr,Mn,Fe,Co) have nearly the same valence state combinations, as accounts for the similar M-independent spectral features observed in them.Comment: 21 pages, 3 figures. to be published in Phys. Rev. B on 15th Se

    Dedalo: looking for clusters explanations in a labyrinth of Linked Data

    Get PDF
    We present Dedalo, a framework which is able to exploit Linked Data to generate explanations for clusters. In general, any result of a Knowledge Discovery process, including clusters, is interpreted by human experts who use their background knowledge to explain them. However, for someone without such expert knowledge, those results may be difficult to understand. Obtaining a complete and satisfactory explanation becomes a laborious and time-consuming process, involving expertise in possibly different domains. Having said so, not only does the Web of Data contain vast amounts of such background knowledge, but it also natively connects those domains. While the efforts put in the interpretation process can be reduced with the support of Linked Data, how to automatically access the right piece of knowledge in such a big space remains an issue. Dedalo is a framework that dynamically traverses Linked Data to find commonalities that form explanations for items of a cluster. We have developed different strategies (or heuristics) to guide this traversal, reducing the time to get the best explanation. In our experiments, we compare those strategies and demonstrate that Dedalo finds relevant and sophisticated Linked Data explanations from different areas

    Structural response to O*-O' and magnetic transitions in orthorhombic perovskites

    Get PDF
    We present a temperature dependent single crystal x-ray diffraction study of twinned orthorhombic perovskites La1-xCaxMnO3, for x=0.16 and x=0.25. These data show the evolution of the crystal structure from the ferromagnetic insulating state to the ferromagnetic metallic state. The data are modelled in space group Pnma with twin relations based on a distribution of the b axis over three perpendicular cubic axes. The twin model allows full structure determination in the presence of up to six twin fractions using the single crystal x-ray diffraction data.Comment: 13 pages, including 13 figures and 2 table

    Evidence for a Low-Spin to Intermediate-Spin State Transition in LaCoO3

    Full text link
    We present measurements of the magnetic susceptibility and of the thermal expansion of a LaCoO3_3 single crystal. Both quantities show a strongly anomalous temperature dependence. Our data are consistently described in terms of a spin-state transition of the Co3+^{3+} ions with increasing temperature from a low-spin ground state to an intermediate-spin state without (100K - 500K) and with (>500K) orbital degeneracy. We attribute the lack of orbital degeneracy up to 500K to (probably local) Jahn-Teller distortions of the CoO6_6 octahedra. A strong reduction or disappearance of the Jahn-Teller distortions seems to arise from the insulator-to-metal transition around 500 K.Comment: an error in the scaling factor of Eq.(4) and consequently 2 values of table I have been corrected. The conclusions of the paper remain unchanged. See also: C. Zobel et al. Phys. Rev. B 71, 019902 (2005) and J. Baier et al. Phys. Rev. B 71, 014443 (2005
    corecore