72 research outputs found

    Centrality and transverse momentum dependence of D-0-meson production at mid-rapidity in Au plus Au collisions ats root S-NN=200 GeV

    Get PDF

    Collision-energy dependence of p(t) correlations in Au plus Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Get PDF

    Measurement of the H-3(Lambda) lifetime in Au plus Au collisions at the BNL Relativistic Heavy Ion Collider

    Get PDF

    Imaging and Endovascular Treatment of Bleeding Pelvic Fractures: Review Article

    Get PDF
    Pelvic fractures are potentially life-threatening injuries with high mortality rates, mainly due to intractable pelvic arterial bleeding. However, concomitant injuries are frequent and may also be the cause of significant blood loss. As treatment varies depending on location and type of hemorrhage, timely imaging is of critical importance. Contrast-enhanced CT offers fast and detailed information on location and type of bleeding. Angiography with embolization for pelvic fracture hemorrhage, particularly when performed early, has shown high success rates as well as low complication rates and is currently accepted as the first method of bleeding control in pelvic fracture-related arterial hemorrhage. In the current review imaging workup, patient selection, technique, results and complications of pelvic embolization are described

    Beam Energy Dependence of Jet-Quenching Effects in Au plus Au Collisions at root s(NN)=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV

    Get PDF
    We report measurements of the nuclear modification factor, RCPR_{ \mathrm{CP}}, for charged hadrons as well as identified π+()\pi^{+(-)}, K+()K^{+(-)}, and p(p)p(\overline{p}) for Au+Au collision energies of sNN\sqrt{s_{_{ \mathrm{NN}}}} = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pTp_{\mathrm{T}} net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} does depend on collision energy, neither the proton nor the anti-proton RCPR_{ \mathrm{CP}} at high pTp_{\mathrm{T}} exhibit net suppression at any energy. A study of how the binary collision scaled high-pTp_{\mathrm{T}} yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.We report measurements of the nuclear modification factor RCP for charged hadrons as well as identified π+(-), K+(-), and p(p¯) for Au+Au collision energies of sNN=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pT net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton RCP at high pT does depend on the collision energy, neither the proton nor the antiproton RCP at high pT exhibit net suppression at any energy. A study of how the binary collision-scaled high-pT yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement

    Azimuthal anisotropy in Cu plus Au collisions at root s(NN)=200 GeV

    Get PDF

    Global polarization of Lambda hyperons in Au plus Au collisions at root s(NN)=200 GeV

    Get PDF

    Coherent diffractive photoproduction of rho(0) mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    Get PDF

    Azimuthal Harmonics in Small and Large Collision Systems at RHIC Top Energies

    Get PDF

    Harmonic decomposition of three-particle azimuthal correlations at energies available at the BNL Relativistic Heavy Ion Collider

    Get PDF
    corecore