5 research outputs found

    Telocytes and sarcopenia: Possible effects of exercise training

    Get PDF
    Dear Editor-in-Chief Recently, telocytes (TCs) have been identified in various organs of the body, which are unique stromal cells (Manetti et al., 2019). Telopodes (very long and thin cytoplasmic projections) in TCs connect directly with other TCs and adjacent structures (including blood vessels, nerve endings, smooth muscles, glandular elements) through direct homo- and heterocellular junctions, or extracellular vesicles. Studies also show that TC damage and dysfunction is involved in the pathogenesis of inflammatory and fibrotic diseases, especially aging, and may be considered as therapeutic agents in the future (Chaitow, 2017). On the other hand, the evidence suggests that sarcopenia and fertility-related aging syndromes, due to their complex etiology, make pharmacological or nutritional prescriptions ineffective in their prevention and treatment (Kwak & Kwon, 2019). Therefore, the use of multidimensional strategies such as exercise programs with nutritional interventions may be more effective in preventing these age-related diseases (Nascimento et al., 2019; Pascual-Fernández et al., 2020). Research suggests that TCs may play a critical role in such matters as cross-talk preservation, regenerative mechanisms, and support for localized stem cell differentiation. In 2021, Ravalli et al. examined the presence of TCs in the anterior tibialis muscle of healthy rats under the endurance training protocol compared with sedentary rats. TCs in this study included CD34/CD117 and CD34/vimentin, which were identified by double-positive immunofluorescence staining technique. They showed that TCs in sedentary rats decreased significantly after 16 weeks. In contrast, trained rats showed a constant number of TCs after 16 weeks. In short, it can be stated that the protective relationship between TCs and regular sports activity may present new opportunities in the field of regenerative medicine and supports the hypothesis that a possible adaptative stimulus for TCs in sarcopenia and other musculoskeletal disorders is the promotion of physical activity (Ravalli et al., 2021; Rocha et al., 2021).In order to support the repair and reconstruction of skeletal muscle, studies performed by transmission electron microscopy also show that there is a close spatial relationship between TCs and satellite cells in adult skeletal muscle. This association is probably due to the intracellular signaling mechanism of endocrine and paracrine, and although their exact function in skeletal muscle regeneration has not yet been fully understood, TCs containing vascular endothelial growth factor and platelet-derived growth factor receptor beta has been discovered in the interstitial part of skeletal muscle. In this way, TCs play an important role in promoting satellite cell self-renewal, vascular stability, facilitating angiogenesis, and preventing fibrosis (Cretoiu & Popescu, 2014; Manetti et al., 2019; Yin et al., 2013).It is important to note that as age increases, skeletal muscle mass and potential for post-injury regeneration decrease. However, the role of intrinsic changes in satellite cells in these reductions has been controversial because studies have documented a decrease in the number of satellite cells with increasing age in mice. On the other hand, some results indicate that there is not significant reduction in this case. Moreover, evidence suggests that the potential for innate regeneration of satellite cell pools is impaired with age. Although the number of satellite cells in old muscle decreases, the inherent myogenic potential and self-renewal capacity of satellite cells remain unchanged. Factors that can play a role in the activation and differentiation of satellite cells are: paired/homeodomain box transcription factors PAX3 and PAX7 and basic helix-loop-helix myogenic regulatory factors (MRFs) such as MYF5, MRF4, MYOD (Myogenic determination gene number 1) and myogenin (Arpke et al., 2021; Mierzejewski et al., 2020).Unlike satellite cells and fibroblasts, skeletal muscle TCs express the c-kit cell surface marker. TC-specific antigenic markers are not yet fully understood; however, CD34 is currently used as the most reliable marker to detect TCs at the site of light microscopy, also known as TCs/CD34 + stromal cells (Manetti et al., 2019; Yin et al., 2013). The positive effects of regular physical activity on the number of satellite cells have been expressed, at the same time, skeletal muscle that contracts and relaxes is likely to be affected by the mechanical support of TCs during exercise (Ceccarelli et al., 2017; Kondo & Kaestner, 2019). Studies have shown evidence and conclusions about TCs, although, little research has been done on TCs in mammalian skeletal muscle tissue. At present, there is no direct experimental evidence and results that conclusively support a TCs-satellite cells morpho-functional interaction following skeletal muscle injury (Manetti et al., 2019). However, due to the beneficial role of exercise on satellite cells and TCs in the prevention of age-related muscle disorders, there are still many issues that need to be addressed, including identifying TC-specific biomarkers and their role in sarcopenia. Therefore, the role of regular physical activity on new interstitial cells such as TCs will be a new treatment for age-related diseases such as sarcopenia, which requires further investigations (Ravalli et al., 2021; Wang et al., 2016)

    Muscle contraction can improve psychological resilience during the COVID-19 lockdown: Neural effects of resistance training at home

    Get PDF
    Dear Editor-in-ChiefThe world has recently experienced one of the hardest pandemics, COVID-19. Clinical signs of this disease include fever, dry cough, and diarrhea, or different symptoms that lead to acute respiratory distress syndrome with a further increase in the severity of the disease. Although the first observations of this disease are the involvement of symptoms and respiratory and heart injuries, various studies have also shown the nerve damage caused by this disease. Common neurological symptoms include headache, dizziness, anosmia, seizures, or paralysis. The elderly and critically ill are in the high-risk group and have shown severe neurological symptoms after COVID-19. Apart from COVID-19-induced cellular and neurological damage, this disease has a profound effect on the mental health of people around the world. Increasing the duration of this disease and staying at home causes social and economic problems and as a result mental health problems (Verma et al., 2020). Neurological and mental illnesses are very common all over the world.Psychological resilience was an important issue during COVID-19 epidemic. In other words, during an epidemic, mental health of people should be consider and cheeked, and entertainment programs should be prevented from causing psychological damage. Research during the COVID-19 epidemic found that because of the psychological pressures to increase psychological resilience, people tended to be more exposed to the outdoors, exercise more, receive more social support from family, friends and important people, sleep better, and pray more, that these factors were effective in mitigating psychological trauma. In most studies, spiritual health affects mental health, because repeated prayers and worships have been more independently associated with psychological resilience (Killgore et al., 2020). In other words, those who actively participate in these spiritual activities and strengthen their relationship with God are found to have the most psychological resilience to the mental health challenges imposed by COVID-19. In addition, the effects of exercise at the cellular level can help improve memory and psyche and be effective in improving psychological resilience. To date, no studies have been performed on secretions due to muscle contraction and its effect on the brain and psychological function, and psychological resilience especially to control the psychological damage caused by an epidemic.Exercise has many beneficial effects on brain health and helps reduce the risks of dementia, depression, and stress, and is involved in restoring and maintaining cognitive function and metabolic control. The fact that exercise is sensed by the brain suggests that environmental factors induced by the muscle allow a direct link between muscle function and the brain. Muscles secrete myokines that help regulate hippocampal function. Evidence is accumulating that myokine cathepsin B crosses the blood-brain barrier to increase brain-derived neurotrophic factor production, resulting in neurogenesis, memory, and learning. In addition, the muscle tissue itself can affect the central nervous system, memory, and psyche in form of endocrine by increasing BDNF expression. Exercise also increases the expression of the neurogenic gene FNDC5 (which encodes myogenic FNDC5-dependent PGC1α), which in turn can help increase levels of brain-derived neurotrophic factor (Pedersen, 2019).Serum levels of myokine, IL-6, increase with exercise and may have beneficial effects on the central nervous system. Exercise also increases PGC1α-dependent muscle expression and the enzymes kynurenine aminotransferase, which beneficially alters the balance between the neurotoxic kynurenine and the neuroprotective Kynurenic acid, thereby reducing depressive symptoms. Signaling myokine and other muscle factors and exercise-induced hepatokines and adipokines play a role in the beneficial effects of exercise on neurogenesis, cognitive function, appetite, and metabolism, thus supporting the existence of a muscle-brain endocrine axis. Also, it can affect psychological resilience which needs more studies

    Effects of Neurodevelopmental Therapy on Gross Motor Function in Children with Cerebral Palsy

    Get PDF
    How to Cite This Article: labaf S, Shamsoddini A, Hollisaz MT, Sobhani V, Shakibaee A . Effects of Neurodevelopmental Therapy on Gross Motor Function in Children with Cerebral Palsy. Iran J Child Neurol. Spring 2015;9(1):37-42.AbstractObjectiveNeurodevelopmental treatments are an advanced therapeutic approach practiced by experienced occupational therapists for the rehabilitation of children with cerebral palsy. The primary challenge in children with cerebral palsy is gross motor dysfunction. We studied the effects of neurodevelopmental therapy on gross motor function in children with cerebral palsy.Materials & MethodsIn a quasi-experimental design, 28 children with cerebral palsy were randomly divided into two groups. Neurodevelopmental therapy was given to a first group (n=15) with a mean age of 4.9 years; and a second group with a mean age 4.4 years (n=13) who were the control group. All children were evaluated with the Gross Motor Function Measure. Treatments were scheduled for three - one-hour sessions per week for 3 months.ResultsWe obtained statistically significant differences in the values between the baseline and post treatment in two groups. The groups were significantly different in laying and rolling (P=0.000), sitting (0.002), crawling and kneeling (0.004), and standing abilities (P=0.005). However, there were no significantdifferences in walking, running, and jumping abilities between the two groups (0.090).ConclusionWe concluded that the neurodevelopmental treatment improved gross motor function in children with cerebral palsy in four dimensions (laying and rolling, sitting, crawling and kneeling, and standing). However, walking, running, and jumping did not improve significantly

    Is there a cross talk between aortic valve calcification and bone mineral density in older adult men and women? A single-center study from Iran

    Get PDF
    Despite numerous studies, the association between osteoporosis and aortic valve calcification is not clear. This study aimed to investigate the relationship between aortic valve calcification and osteoporosis in an Iranian population over 60. In this cross-sectional study, patients aged over 60 years referring to the Bone Mineral Densitometry center of Baqiyatallah Hospital (Tehran, Iran) during 2019-2020 were evaluated. Trans-thoracic echocardiography was done for all patients to evaluate the existence of aortic valve calcification. Patients were compared in two groups with and without osteoporosis (T-score < -2.5) as well as in two groups with and without aortic calcification. Two-hundred patients with a mean age of 65.92 ± 5.59 years and a mean body mass index (BMI) of 25.73 ± 4.08 kg/m2 were studied (84.5% female). Patients with osteoporosis (n=104) had lower BMI and greater frequency of aortic calcification compared to the patients without osteoporosis (n = 96). Patients with aortic calcification had higher age, lower BMI, and higher proportion of osteoporosis compared to the patients without aortic calcification (P<0.05). According to the results, it is suggested that elderly patients with osteoporosis and hypertension be evaluated for aortic valve calcification. This evaluation seems more crucial for older people with high blood pressure, lower BMI, and osteoporosis. Moreover, patients with aortic valve calcification could be evaluated for osteoporosis. Confirming the above results requires further investigation with a larger sample size

    Exercise training and muscle–lung crosstalk: The emerging roles of Irisin and Semaphorin-3A in pulmonary diseases. A narrative review

    Get PDF
    COPD is an inflammatory disorder caused by prolonged inhalation of harmful substances such as cigarette smoke that leads to an irreversible respiratory disorder. Airway obstruction usually has a progressive period characterized by chronic cough, sputum production, and dyspnea, resulting in decreased physical activity. Two hypotheses have been proposed for the pathogenesis of lung diseases, especially COPD, including the oxidant-antioxidant imbalance hypothesis and the protease-antioxidant imbalance hypothesis. Oxidants can cause irreversible damage to lung cells. Oxidants activate inflammatory gene expression primarily through NFκB signaling. Increase inflammation promotes apoptosis in the epithelial cells, endothelial cells, and airways, that resulting Emphysema. This pathological period causes progress the disease. Recently, has been shown that decreased physical activity is associated with COPD injuries, and the level of physical activity is most associated with COPD mortality. Therefore, the tendency to maintain and improve the physical activity of pulmonary patients, especially COPD was increased. In lung diseases, muscle mass usually decreases and severe atrophy occurs. Most studies suggest increased mobility and exercise to enhance cardiorespiratory endurance and decrease atrophy. However, the exact biological mechanism for the recovery of patients with COPD after a physical activity has not been explained. Exercise can produce Irisin and Semaphorin-3A by stimulating muscle and nerve cell, which have positive effects on other tissues, including the lungs. Limited studies have examined the role of these factors in lung tissue. Therefore, in this mini-review, the lung muscle cross-talk is examined by evaluating the role of Irisin and Semaphorin-3A
    corecore