749 research outputs found

    Neutrino Democracy, Fermion Mass Hierarchies And Proton Decay From 5D SU(5)

    Get PDF
    The explanation of various observed phenomena such as large angle neutrino oscillations, hierarchies of charged fermion masses and CKM mixings, and apparent baryon number conservation may have a common origin. We show how this could occur in 5D SUSY SU(5) supplemented by a U(1){\cal U}(1) flavor symmetry and additional matter supermultiplets called 'copies'. In addition, the proton decays into pKνp\to K\nu , with an estimated lifetime of order 1033103610^{33}-10^{36} yrs. Other decay channels include KeKe and KμK\mu with comparable rates. We also expect that BR(μeγ)(\mu \to e\gamma)\sim BR(τμγ)(\tau \to \mu \gamma)

    SU(4)_c x SU(2)_L x SU(2)_R model from 5D SUSY SU(4)_c x SU(4)_{L+R}

    Full text link
    We investigate supersymmetric SU(4)c×SU(4)L+RSU(4)_c\times SU(4)_{L+R} theory in 5 dimensions whose compactification on a S(1)/Z2S^{(1)}/Z_2 orbifold yields N=1 supersymmetric SU(4)c×SU(2)L×SU(2)RSU(4)_c\times SU(2)_L\times SU(2)_R supplemented by a \tl{U}(1) gauge symmetry. We discuss how the μ\mu problem is resolved, a realistic Yukawa sector achieved, and a stable proton realized. Neutrino masses and oscillations are also briefly discussed.Comment: Version to appear in Physical Review

    Molecular beam epitaxy of GaBiAs on (311) B GaAs substrates

    Get PDF
    We report the growth by molecular beam epitaxy of Ga Bix As1-x epilayers on (311) B GaAs substrates. We use high-resolution x-ray diffraction (HRXRD), transmission electron microscopy, and Z -contrast imaging to characterize the structural properties of the as-grown material. We find that the incorporation of Bi into the GaBiAs alloy, as determined by HRXRD, is sizably larger in the (311) B epilayers than in (001) epilayers, giving rise to reduced band-gap energies as obtained by optical transmission spectroscopy. © 2007 American Institute of Physics

    Monopole-antimonopole bound states as a source of ultra-high-energy cosmic rays

    Get PDF
    The electromagnetic decay and final annihilation of magnetic monopole-antimonopole pairs formed in the early universe has been proposed as a possible mechanism to produce the highest energy cosmic rays. We show that for a monopole abundance saturating the Parker limit, the density of magnetic monopolonium formed is many orders of magnitude less than that required to explain the observed cosmic ray flux. We then propose a different scenario in which the monopoles and antimonopoles are connected by strings formed at a low energy phase transition (~ 100 GeV). The bound states decay by gravitational radiation, with lifetimes comparable with the age of the universe. This mechanism avoids the problems of the standard monopolonium scenario, since the binding of monopoles and antimonopoles is perfectly efficient.Comment: 10 pages, RevTeX, no figure

    Biosynthesis and Degradation of Carotenoids in Ornamental Crops with specific reference to Chrysanthemum

    Full text link
    Carotenoids are lipophilic secondary metabolites derived from the isoprenoid pathway, accumulated in most plant organs and widely used as an antioxidant. Carotenoids synthesized in chloroplasts are essential for protecting tissues against photo-oxidative damage in the green tissues of higher plants. The importance of carotenoids for plant growth and development is evident since at least two major phytohormones, strigolactones and abscisic acid, are derived from carotenoid precursors. In flowers, carotenoids synthesized in the chromoplasts provide colour to the petals, ranging from yellow to red, in order to attract pollinators and determines the commercial value of ornamental plants. On analysis in chrysanthemum, β, ɛ-carotenoids, lutein and its derivatives, reflecting the high expression levels of lycopene ɛ-cyclase (LCYE) were found in yellow petals compared to the ratio of β, β-carotenoids to total carotenoids found in leaves reflecting the high expression levels of lycopene β-cyclase (LCYB). Petals of the yellow-flowered cultivar Yellow Paragon showed increased accumulation and drastic componential changes of carotenoids as they mature, compared to petals of the white-flowered cultivar Paragon that showed drastically decreased carotenoid content during petal development.The white petals of chrysanthemum (Chrysanthemum morifolium Ramat.) contain a factor that inhibits the accumulation of carotenoids. All the white-flowered chrysanthemum cultivars tested showed high levels of CmCCD4a transcript in their petals, whereas most of the yellow flowered cultivars showed extremely low levels indicating that in white petals of chrysanthemums, carotenoids are synthesized but subsequently degraded into colourless compounds, which results in the white colour. Studying the regulatory mechanisms underlying carotenoid accumulation in ornamental plants at the molecular level will help in producing novel coloured cultivars by plant transformation

    Measurement of Inverse Pion Photoproduction at Energies Spanning the N(1440) Resonance

    Full text link
    Differential cross sections for the process pi^- p -> gamma n have been measured at Brookhaven National Laboratory's Alternating Gradient Synchrotron with the Crystal Ball multiphoton spectrometer. Measurements were made at 18 pion momenta from 238 to 748 MeV/c, corresponding to E_gamma for the inverse reaction from 285 to 769 MeV. The data have been used to evaluate the gamma n multipoles in the vicinity of the N(1440) resonance. We compare our data and multipoles to previous determinations. A new three-parameter SAID fit yields 36 +/- 7 (GeV)^-1/2 X 10^-3 for the A^n_1/2 amplitude of the P_11.Comment: 14 pages, 8 figures, submitted to PR

    Inflationary Cosmology with Five Dimensional SO(10)

    Full text link
    We discuss inflationary cosmology in a five dimensional SO(10) model compactified on S1/(Z2×Z2)S^1/(Z_2\times Z_2'), which yields SU(3)c×SU(2)L×U(1)Y×U(1)XSU(3)_c\times SU(2)_L\times U(1)_Y\times U(1)_X below the compactification scale. The gauge symmetry SU(5)×U(1)XSU(5)\times U(1)_X is preserved on one of the fixed points, while ``flipped'' SU(5)×U(1)XSU(5)'\times U(1)'_X is on the other fixed point. Inflation is associated with U(1)XU(1)_X breaking, and is implemented through FF-term scalar potentials on the two fixed points. A brane-localized Einstein-Hilbert term allows both branes to have positive tensions during inflation. The scale of U(1)XU(1)_X breaking is fixed from δT/T\delta T/T measurements to be around 101610^{16} GeV, and the scalar spectral index n=0.980.99n=0.98-0.99. The inflaton field decays into right-handed neutrinos whose subsequent out of equilibrium decay yield the observed baryon asymmetry via leptogenesis.Comment: 1+19 pages, improved discussion of 5D cosmology, Version to appear in PR

    NLSP Gluino Search at the Tevatron and early LHC

    Full text link
    We investigate the collider phenomenology of gluino-bino co-annihilation scenario both at the Tevatron and 7 TeV LHC. This scenario can be realized, for example, in a class of realistic supersymmetric models with non-universal gaugino masses and t-b-\tau Yukawa unification. The NLSP gluino and LSP bino should be nearly degenerate in mass, so that the typical gluino search channels involving leptons or hard jets are not available. Consequently, the gluino can be lighter than various bounds on its mass from direct searches. We propose a new search for NLSP gluino involving multi-b final states, arising from the three-body decay \tilde{g}-> b\bar{b}\tilde{\chi}_1^0. We identify two realistic models with gluino mass of around 300 GeV for which the three-body decay is dominant, and show that a 4.5 \sigma observation sensitivity can be achieved at the Tevatron with an integrated luminosity of 10 fb^{-1}. For the 7 TeV LHC with 50 pb^{-1} of integrated luminosity, the number of signal events for the two models is O(10), to be compared with negligible SM background event.Comment: 14 pages, 4 figures and 3 tables, minor modifications made and accepted for publication in JHE
    corecore