37 research outputs found

    On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil

    Get PDF
    A family of faujasite (FAU) zeolites with different Si:Al ratio, and/or hierarchical porosity introduced via post-synthetic alkaline desilication treatment, have been evaluated as solid acid catalysts for esterification pretreatments of pyrolysis bio-oil components. Acetic acid esterification with aliphatic and aromatic alcohols including methanol, anisyl alcohol, benzyl alcohol, p-cresol and n-butanol was first selected as a model reaction to identify the optimum zeolite properties. Materials were fully characterised using N2 porosimetry, ICP, XRD, XPS, FT-IR, pyridine adsorption, NH3 TPD, In-situ ATR and inverse gas chromatography (IGC). IGC demonstrates that the surface polarity and hence hydrophobicity of FAU decreases with increased Si:Al ratio. Despite possessing a higher acid site loading and acetic acid adsorption capacity, high Al-content FAU possess weaker acidity than more siliceous catalysts. Esterification activity increases with acid strength and decreasing surface polarity following the order FAU30>FAU6>FAU2.6. The introduction of mesoporosity through synthesis of a hierarchical HFAU30 material further enhances esterification activity through improved acid site accessibility and hydrophobicity. Methanol was the most reactive alcohol for esterification, and evaluated with HFAU30 for the pretreatment of a real pyrolysis bio-oil, reducing the acid content by 76% under mild conditions

    Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Low-level, partial resistance is pre-eminent in natural populations, however, the mechanisms underlying this form of resistance are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used the model pathosystem Pseudomonas syringae pv. tomato DC3000 (Pst) - Arabidopsis thaliana to study the genetic basis of this form of resistance. Phenotypic analysis of a set of Arabidopsis accessions, based on evaluation of in planta pathogen growth revealed extensive quantitative variation for partial resistance to Pst. It allowed choosing a recombinant inbred line (RIL) population derived from a cross between the accessions Bayreuth and Shahdara for quantitative genetic analysis. Experiments performed under two different environmental conditions led to the detection of two major and two minor quantitative trait loci (QTLs) governing partial resistance to Pst and called PRP-Ps1 to PRP-Ps4. The two major QTLs, PRP-Ps1 and PRP-Ps2, were confirmed in near isogenic lines (NILs), following the heterogeneous inbred families (HIFs) strategy. Analysis of marker gene expression using these HIFs indicated a negative correlation between the induced amount of transcripts of SA-dependent genes PR1, ICS and PR5, and the in planta bacterial growth in the HIF segregating at PRP-Ps2 locus, suggesting an implication of PRP-Ps2 in the activation of SA dependent responses. CONCLUSIONS/SIGNIFICANCE: These results show that variation in partial resistance to Pst in Arabidopsis is governed by relatively few loci, and the validation of two major loci opens the way for their fine mapping and their cloning, which will improve our understanding of the molecular mechanisms underlying partial resistance

    Comparative genomic analysis of pre-epidemic and epidemic Zika virus strains for virological factors potentially associated with the rapidly expanding epidemic

    No full text
    Less than 20 sporadic cases of human Zika virus (ZIKV) infection were reported in Africa and Asia before 2007, but large outbreaks involving up to 73% of the populations on the Pacific islands have started since 2007, and spread to the Americas in 2014. Moreover, the clinical manifestation of ZIKV infection has apparently changed, as evident by increasing reports of neurological complications, such as Guillain–Barré syndrome in adults and congenital anomalies in neonates. We comprehensively compared the genome sequences of pre-epidemic and epidemic ZIKV strains with complete genome or complete polyprotein sequences available in GenBank. Besides the reported phylogenetic clustering of the epidemic strains with the Asian lineage, we found that the topology of phylogenetic tree of all coding regions is the same except that of the non-structural 2B (NS2B) coding region. This finding was confirmed by bootscan analysis and multiple sequence alignment, which suggested the presence of a fragment of genetic recombination at NS2B with that of Spondweni virus. Moreover, the representative epidemic strain possesses one large bulge of nine bases instead of an external loop on the first stem-loop structure at the 3′-untranslated region just distal to the stop codon of the NS5 in the 1947 pre-epidemic prototype strain. Fifteen amino acid substitutions are found in the epidemic strains when compared with the pre-epidemic strains. As mutations in other flaviviruses can be associated with changes in virulence, replication efficiency, antigenic epitopes and host tropism, further studies would be important to ascertain the biological significance of these genomic changes
    corecore